

I recognise the importance of UK sustainable energy, grid decarbonisation and the achievement of net zero, and I am in principle supportive of solar energy developments that contribute to home-grown electricity generation and reduce reliance on volatile international oil and gas markets. However, this support is conditional on place-based planning. For the reasons set out below, I have serious concerns about the suitability of this specific site and do not consider that the evidence demonstrates it can be developed safely or sustainably.

Historic Industrial and Chemical Legacy

The proposed site lies within an area historically associated with the ICI Runcorn chemical complex, for many decades one of the largest chemical manufacturing centres in Europe. Parliamentary records, regulatory investigations and contemporary reporting document extensive historic disposal of chemical wastes in quarries, lagoons and marshland across the Runcorn and Frodsham Marsh area. These practices occurred at a time when environmental controls were limited and record-keeping was often incomplete.

This legacy has resulted in serious contamination incidents in the past, including the migration of toxic gases from former waste disposal areas into nearby homes, leading to evacuations and long-term disruption. Substances historically associated with the area include vinyl chloride, carbon tetrachloride, chloroform and other chlorinated compounds. This well-documented industrial history gives rise to a reasonable and material concern that historic landfill and tipping areas may contain complex, heterogeneous chemical wastes whose full extent and composition may be poorly recorded or unknown.

Unlined Tanks and Tipping Lagoons

In addition to the wider industrial context, the site itself is understood to overlie a series of historic, unlined tanks and tipping lagoons beneath Frodsham Marsh, commonly referred to as Tanks 1–6, along with the Frodsham Marsh and Weston Marsh lagoons. Some of these features do not appear on formal landfill registers. Accounts from former workers indicate that mixed industrial chemicals were disposed of in these tanks over many years.

Substances reported to have been disposed of in this manner include arsenic, carbon tetrachloride and vinyl chloride. The tanks are unlined and situated within a flood-prone estuarine environment. In such circumstances, there is a credible risk of contaminant migration through saturated soils and groundwater. The presence of undocumented or poorly documented tanks represents a material constraint and warrants a precautionary approach before any development involving ground disturbance is permitted.

Limitations of the Site Investigation

The focussed site investigation undertaken on behalf of the applicant provides information only at four shallow locations selected by the applicant. All boreholes were positioned on or near the margins of historic tanks, rather than within their central footprints where deposited materials are likely to be deepest and most heterogeneous. Sampling was limited to a maximum depth of 3 metres below ground level, despite evidence that the tanks and lagoons extend to far greater depths, potentially in the order of 15–20 metres.

The analytical suite was also limited. While carbon tetrachloride was detected marginally above laboratory limits of detection, this does not demonstrate its absence at depth or elsewhere within the tanks, nor does it rule out the presence of other hazardous substances that were not tested for, including persistent industrial pollutants such as PCBs. Where landfill contents are poorly recorded or unknown, accepted regulatory practice requires such sites to be treated as potentially hazardous until proven otherwise.

Taken together, the investigation demonstrates only that contaminant concentrations were low at four shallow locations; it does not provide a comprehensive characterisation of risk across the site and does not justify the conclusion that disturbance of historic tanks would be risk-free.

Worst-Case Interaction: Battery Fire and Buried Chemicals

A reasonable worst-case scenario arises if a lithium-ion battery fire were to occur on a salt marsh floodplain underlain by historic chemical wastes. Lithium-ion battery fires are known to generate extremely high temperatures, can be prolonged, and are difficult to extinguish, particularly in flood-prone environments.

If such heat were transmitted into underlying landfill materials, chlorinated hydrocarbons such as vinyl chloride and carbon tetrachloride could ignite or thermally decompose. Under high-temperature conditions, these substances can generate highly toxic gases including hydrogen chloride and phosgene. Phosgene is acutely toxic even at low concentrations. The floodplain setting further compounds this risk, as saturated soils and fluctuating groundwater levels can facilitate the migration of contaminants and gases beyond the immediate source area.

While such an event may be low-probability, the consequences are severe. This interaction has not been explicitly assessed, and in the presence of uncertainty over the nature and extent of buried chemical wastes, best practice requires that such scenarios be formally evaluated and either ruled out or mitigated before development proceeds.

Reliance on Previous Wind Farm Condition Discharges

It is often suggested that contamination risks were resolved through the discharge of conditions associated with the previous wind farm development. However, a review of planning records shows that conditions relating to contamination and unexpected contamination were discharged largely for procedural reasons, including errors in condition wording, rather than following comprehensive site-wide investigation.

In particular, the discharge of conditions did not require intrusive investigation of the central footprints of historic tanks or deep testing across the site. Some discharges relied on limited, localised assessments, with further monitoring recommended after discharge rather than completed beforehand. In other cases, approvals were explicitly conditional and precautionary, with regulators acknowledging residual uncertainty and the need for ongoing monitoring and review.

These discharges should not be interpreted as confirmation that contamination risks were fully characterised or eliminated. They provide limited reassurance and cannot reasonably be relied upon as precedent for a new and substantially larger development involving wider land take, deeper disturbance and different forms of infrastructure.

Flood Risk and Site Sensitivity

The proposed site lies on a low-lying salt marsh floodplain, with a significant proportion within Flood Zone 3, where there is a high probability of flooding from tidal and fluvial sources. Communities across the Weaver and Mersey catchments have experienced repeated flooding in recent years, and Frodsham itself has experienced near-miss events where flood defences and tidal conditions narrowly prevented serious impacts.

Climate change projections indicate increasing flood frequency, rising groundwater levels and sea-level rise over the lifetime of the development, with parts of the site projected to fall below annual flood levels within coming decades. Flooding in this setting raises concerns not only about damage to infrastructure but also about the mobilisation of buried contaminants through saturated soils and groundwater movement.

These concerns are reinforced by regulatory advice identifying unresolved issues relating to flood risk management, safe access and egress during flood events, the creation of isolated “dry islands”, impacts on flood conveyance and flood defence assets, and insufficient consideration of water quality risks. Taken together, flood risk and uncertain ground conditions represent a compound hazard that has not been adequately addressed.

Environmental and Ecological Impacts

The site lies within Frodsham Marshes, which are functionally linked to the internationally important Mersey Estuary and support significant numbers of migratory and non-breeding birds. Independent assessments identify the land as functionally linked habitat, meaning it plays an important supporting role despite its degraded appearance.

The proposal would result in the loss of this land, partial loss of a Local Wildlife Site, and the removal of land currently secured as mitigation for the existing wind farm, without providing genuinely additional or equivalent compensatory habitat. Concerns have been raised regarding survey adequacy, habitat connectivity and cumulative impacts with other major developments. The evidence indicates a net loss of biodiversity rather than a meaningful contribution to nature recovery.

Community Infrastructure, Landscape and Access

The proposed community benefits package appears disproportionately limited given the scale and duration of the development. Many measures cited, including habitat enhancements, interpretation, cycle routes and bridleways, are aspirational rather than secured through enforceable obligations.

The visual impact of a development of this scale on views from Frodsham and Helsby Hills is a major local concern. Evidence shows that effective natural screening could materially reduce visual harm without significantly affecting solar generation, yet this option has been dismissed without adequate testing. In addition, any new cycleways and bridleways must be delivered to all-weather standards, properly maintained and secured for the lifetime of the development if they are to provide genuine mitigation.

Conclusion

Taken together, the historic industrial legacy of the site, the presence of unlined and poorly documented tanks, the limited scope of contamination testing, the unresolved interaction between flood risk and buried chemicals, the reliance on procedural precedent, and the ecological sensitivity of the marsh demonstrate that this site is unusually constrained and complex. While solar energy is supported in principle, the evidence does not demonstrate that this particular location can be developed safely or sustainably without unacceptable risk. In these circumstances, a precautionary, place-based approach is required, and the proposed development should not proceed unless and until these fundamental uncertainties are robustly resolved.

Dear Sir / Madam

I recognise the importance of UK sustainable energy, grid decarbonisation and the achievement of net zero, and I am in principle supportive of solar projects that contribute to home-grown energy generation and reduce reliance on volatile foreign oil and gas markets; however, this support is conditional on place-based planning, and I have a number of serious concerns regarding the suitability of this specific site.

Historic Chemical Landfill Concerns

The proposed site lies within an area historically associated with the ICI Runcorn chemical complex, which for many decades was one of the largest chemical manufacturing centres in Europe. Contemporary reporting and parliamentary records document extensive historic disposal of chemical wastes in quarries, lagoons and marshland in and around Runcorn, including the tipping of mixed industrial residues that would not meet modern environmental standards. These legacy practices have previously resulted in serious contamination incidents, including the migration of toxic gases such as hexachlorobutadiene (HCBD) from former waste dumps into nearby homes, leading to evacuations and long-term community disruption. ICI Runcorn has also been identified in multiple official and media investigations as one of the UK's most significant historical emitters of carcinogenic pollutants, with documented releases of substances such as chloroform, vinyl chloride and other chlorinated compounds. This well-evidenced industrial legacy gives rise to reasonable concern that historic landfill areas in this location may contain complex, heterogeneous chemical wastes, the full extent of which may be poorly recorded or unknown. In this context, any development involving ground disturbance should be preceded by particularly robust and precautionary investigation, as past experience in the Runcorn area demonstrates that contamination risks have not always been apparent until many years after sites were capped or repurposed.

Unlined Tanks and Reported Chemical Disposal

In addition to the wider legacy of chemical activity in the area, the proposed site is understood to overlie a series of historic, unlined tanks and tipping lagoons associated with industrial waste disposal on Frodsham Marsh. Mapping and local records identify multiple tanks (commonly referred to as Tanks 1–6) beneath a substantial portion of the site, alongside the Frodsham Marsh Tipping Lagoon and Weston Marsh Lagoon, some of which do not appear on formal historic landfill registers. Former ICI workers have reported that these tanks and lagoons were used to dispose of redundant and mixed industrial chemicals over many years, at a time when environmental controls were far less stringent than today.

Substances reported to have been disposed of in the tanks underlying the site of Frodsham Solar in this manner include:

- arsenic
- carbon tetrachloride
- vinyl chloride

It is acknowledged that records of historic tipping practices may be incomplete. The fact that these tanks were unlined and are located within a flood-prone estuarine environment raises particular concern regarding the potential for contaminant migration. In this context, the presence of buried tanks beneath the site represents a material constraint, and reinforces the need for a precautionary approach and comprehensive investigation before any development involving ground disturbance is permitted.

Limitations of the Axis / Smith Grant Site Investigation

While the focussed site investigation undertaken on behalf of the applicant provides information on soil conditions at the specific locations and depths sampled, it does not amount to a comprehensive characterisation of contamination risk across the site. All four boreholes were positioned on or close to the margins of the historic tanks, rather than within their central footprints where deposited materials are likely to be deepest, most heterogeneous and least disturbed. Sampling was limited to a maximum depth of 3.0 metres below ground level, despite historical evidence indicating that the tanks and lagoons extend to significantly greater depths, potentially in the order of 15–20 metres. It cannot therefore be assumed that contaminant concentrations measured at shallow depths near tank edges are representative of conditions deeper within, or closer to the centre of, these features.

In addition, the analytical scope was limited to a narrow suite of contaminants. Although carbon tetrachloride was detected marginally above laboratory limits of detection, this does not demonstrate its absence at depth or elsewhere within the tank structures, nor does it rule out the presence of other hazardous substances that were not tested for, including persistent industrial pollutants such as PCBs. Where landfill contents are poorly recorded or unknown, accepted regulatory practice requires such sites to be treated as potentially hazardous until proven otherwise.

Furthermore, evidence from local historical records indicates that tanks without full deposit documentation may exist beneath the entirety of the site, suggesting that the extent of buried waste may be more widespread than reflected in official datasets.

Taken together, the investigation shows only that contaminant concentrations were low at four shallow locations selected by the applicant; it does not rule out the presence of more concentrated or mixed industrial wastes at depth, nor does it demonstrate that disturbance of the tanks would be risk-free. As such, the investigation provides limited reassurance and does not justify the conclusion that the site poses no material contamination risk.

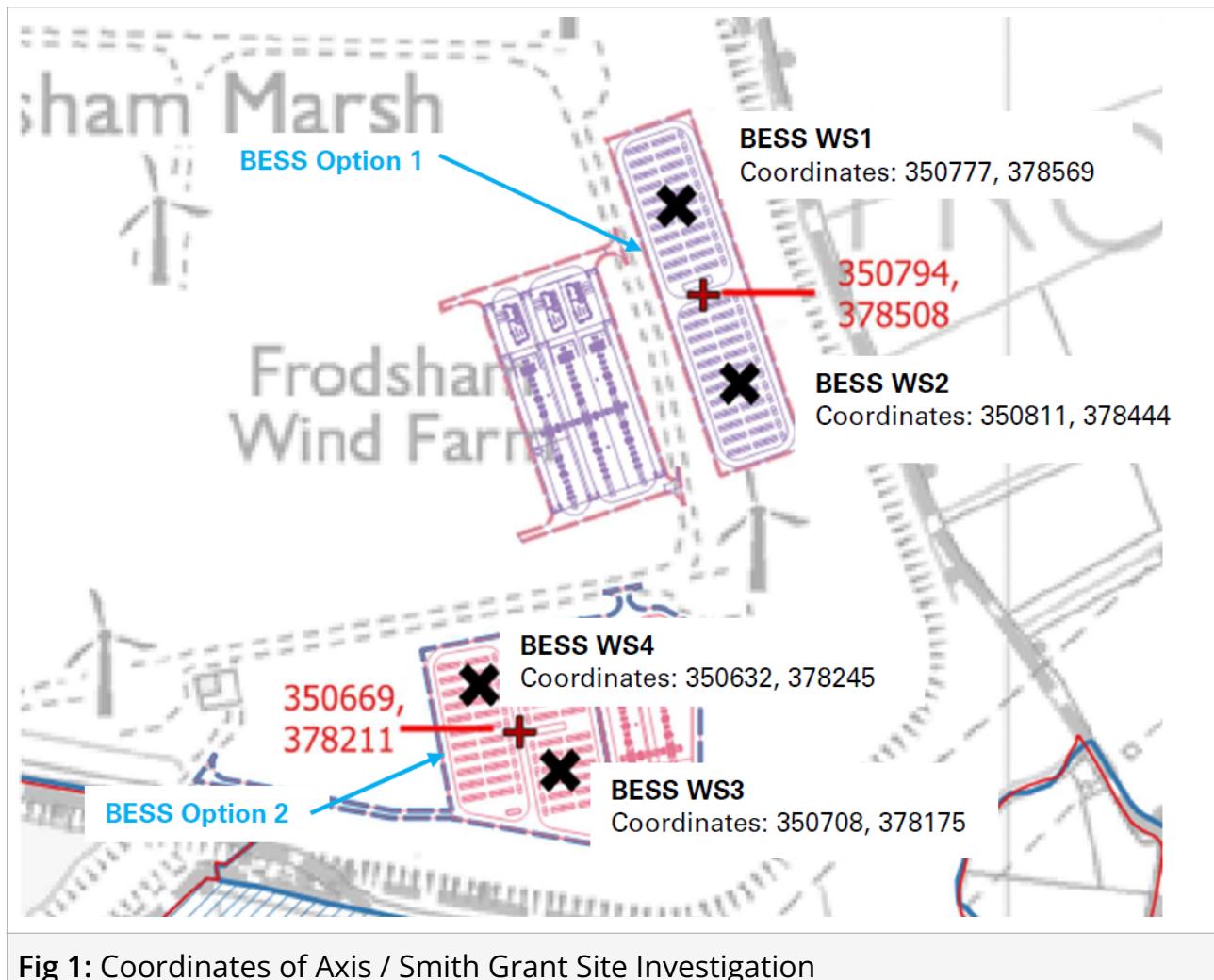


Fig 2: Historic tank layout overlaid with battery placement

Worst-Case Interaction of Buried Chemicals and Battery Fire

A reasonable worst-case scenario arises if a lithium-ion battery fire were to occur on a salt marsh floodplain underlain by historic chemical wastes, including vinyl chloride. Lithium-ion battery fires are known to generate extremely high temperatures, often exceeding 1,000°C, and can be prolonged and difficult to extinguish, particularly in flood-prone environments. If such heat were transmitted into underlying landfill materials, vinyl chloride present at depth could ignite or thermally decompose. Under high-temperature conditions, the combustion or breakdown of chlorinated hydrocarbons such as vinyl chloride and carbon tetrachloride can result in the formation of highly toxic gases, including hydrogen chloride and phosgene.

Phosgene is an acutely toxic gas with well-documented health impacts, historically used as a chemical weapon, and poses a serious risk even at low concentrations.

The floodplain setting further compounds this risk, as saturated soils and fluctuating groundwater levels can facilitate the migration of contaminants and gases beyond the immediate source area. While this represents a low-probability event, the potential consequences are severe, and such a scenario has not been explicitly assessed. In the presence of uncertainty over the nature and extent of buried chemical wastes, best practice would require that this interaction be formally evaluated and either ruled out or mitigated before development proceeds.

Previous Wind Farm Discharge of Conditions

Reference is often made to the discharge of contamination-related conditions associated with the previous wind farm application as evidence that land contamination risks have been satisfactorily resolved. However, a review of the Cheshire West & Chester Council planning records indicates that the relevant conditions (including applications 14/02525/DIS, 15/00316/DIS and 15/01611/DIS) were discharged primarily because the wording and scope of the original conditions were found to be incorrect or unenforceable, rather than because comprehensive or conclusive site-wide testing had been undertaken. In particular, the discharge of conditions relating to contamination and unexpected contamination did not require intrusive investigation of the historic tanks or lagoons beneath large areas of the site, nor did it involve deep testing within their central footprints. As such, the discharge of these conditions should not be interpreted as confirmation that contamination risks

were fully assessed or eliminated. It reflects a procedural resolution of condition wording, not a definitive demonstration that the underlying land is free from contamination or suitable for disturbance without further precautionary investigation.

The Cheshire West & Chester Council planning portal provides significant detail regarding the testing that was conducted around the WindFarm planning applications. Further documentation can be supplied if required.

14/02525/DIS - Discharge of Conditions 25, 31, 32 and 34

Condition 25 – Construction Environmental Management Plan (CEMP)

Condition 31 – Outline Ecological Management Plan

Condition 32 – Habitat Creation and Management Plan

Condition 34 – Habitat Mitigation

The discharge of conditions under application 14/02525/DIS provides limited reassurance that environmental and contamination risks were fully resolved. Correspondence from Natural England makes clear that approval was conditional and subject to multiple outstanding clarifications, particularly in relation to habitat creation, groundwater behaviour, and long-term monitoring. Natural England explicitly noted gaps and inconsistencies in the documentation, including missing or unclear baseline survey information, uncertainty over groundwater conditions, unresolved questions around habitat functionality, and reliance on future monitoring to determine whether proposed mitigation would work as intended. Of particular relevance is the acknowledgement that further information would be required before mitigation designs could be finalised, and that additional review might be necessary once monitoring data became available. This demonstrates that the discharge of conditions was based on an iterative and precautionary process, rather than a definitive confirmation that risks had been fully characterised or mitigated. As such, this discharge should not be relied upon as evidence that the site is well understood or suitable for more extensive development involving substantially greater land take, deeper disturbance, and different forms of infrastructure.

15/00316/DIS - Partial Discharge of Condition 37 c and d (Contamination and unexploded ordnance)

The partial discharge of Condition 37(c) and (d) in April 2015 also provides limited reassurance in relation to contamination and unexploded ordnance risk. While the Council approved specific documents, including a Piling Risk Assessment and baseline monitoring information, this approval was explicitly conditional and precautionary in nature. The decision letter makes clear that contamination risks were not considered fully resolved, but instead required ongoing mitigation, verification, and monitoring,

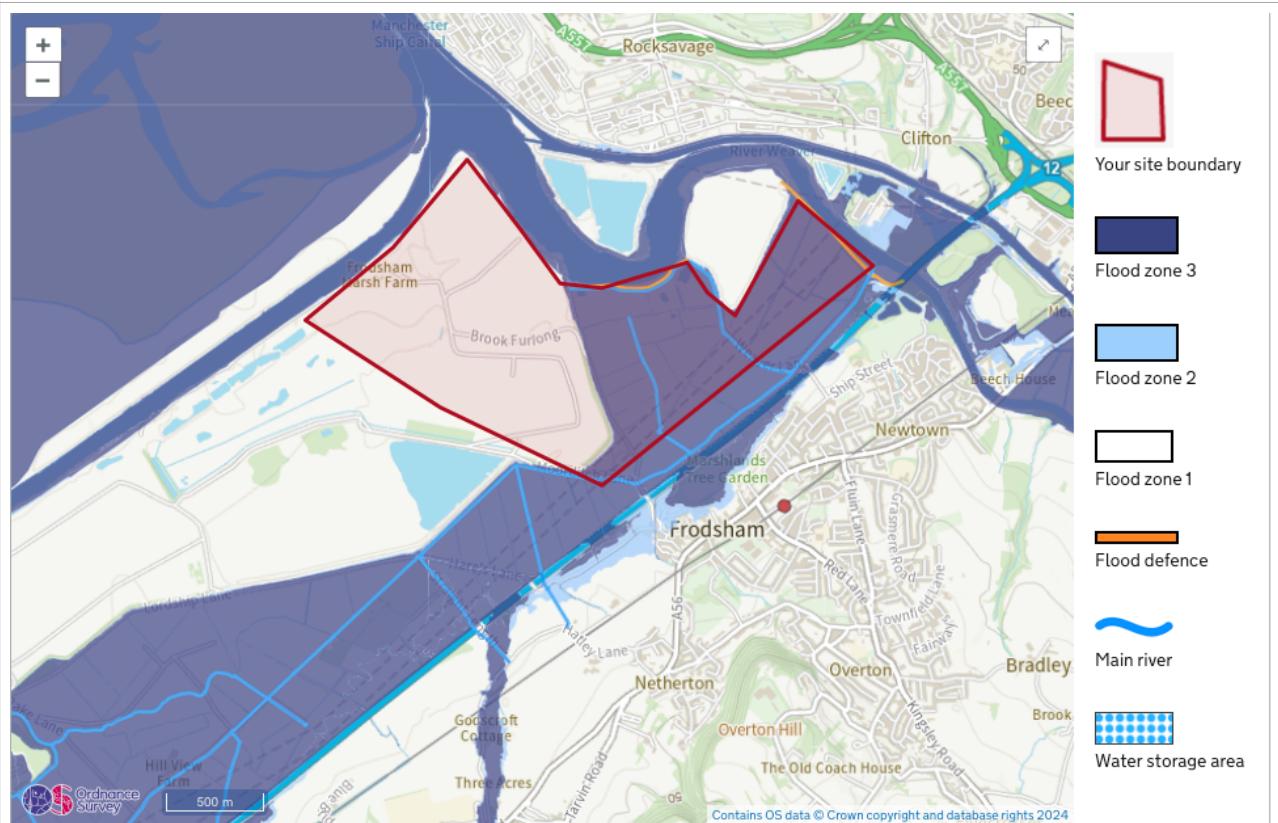
including the submission of a verification report prior to commissioning and the potential for longer-term monitoring post-commissioning. Importantly, the Council's Environmental Protection team advised that any modification or relocation of structures should trigger a review of piling, contamination and UXO risks, and that updated information should be submitted accordingly. The Environment Agency further recommended a "watching brief" approach, with regular monitoring of surrounding watercourses to identify any unsuspected contamination released during construction. These statements indicate that residual uncertainty and risk were explicitly acknowledged at the time, and that approval was granted on the basis of controlled, limited works subject to close oversight. In this context, the partial discharge of Condition 37(c) and (d) should not be interpreted as confirmation that contamination risks were fully characterised or eliminated, particularly when considering a new and significantly larger development involving different infrastructure, wider ground disturbance, and interaction with historic landfill areas.

15/01611/DIS - Discharge of condition 38 Unexpected Contamination

In a letter from Turley dated 6th April 2015...

"In accordance with this condition, we have submitted an investigation and risk assessment with this application which has concluded that the risk of the contamination found in Cell 3 is low and therefore further detailed toxicological modelling is not warranted..."

.... It is noted that Condition 38 of the original planning permission includes a typographical error. The condition refers to Condition 35 and 36 (which in fact relate to invasive species and retained habitat features). This is undoubtedly an error and it is clear that the Secretary of State had intended to refer to Condition 37. In our view, the thrust of the Condition 38 is clear and there is no impediment to the Council discharging this Condition 38 in this instance.


The discharge of Condition 38 in relation to unexpected contamination raises concern because it was resolved without comprehensive, site-wide testing of the historic landfill and tank structures underlying the site. The supporting correspondence from April 2015 confirms that contamination encountered in Cell 3 was assessed as presenting a "low" risk, and that further detailed toxicological modelling was therefore considered unnecessary. Instead, additional monitoring was merely recommended to take place over a subsequent 12-month period. This approach meant that the condition was discharged on the basis of a limited and localised assessment, rather than a full understanding of the extent, depth, or variability of contamination across the wider site. Furthermore, the discharge was facilitated in part by the

acknowledgement that the condition itself contained a typographical error, and that its intent could be interpreted without requiring further investigation.

As a result, the procedural resolution of Condition 38 should not be taken as evidence that unexpected contamination risks were fully identified, characterised or ruled out. In the context of a much larger and more intrusive development now being proposed, reliance on this earlier discharge provides limited reassurance and reinforces the need for a precautionary and comprehensive approach to contamination assessment before any further ground disturbance is permitted.

Flood Risk and Site Sensitivity

Over the past decade, communities along the Weaver and Mersey catchments, including Northwich and Acton Bridge, have experienced repeated flooding events causing significant damage, highlighting the increasing frequency and severity of flood risk in this area. Frodsham itself has experienced a number of near-miss events, where flood defences and tidal conditions have only narrowly prevented serious impacts. The proposed solar farm is located on a low-lying salt marsh floodplain, with a significant proportion of the site within Flood Zone 3, where there is a high probability of flooding from both tidal and fluvial sources. A significant proportion of the Frodsham Solar site is projected to be below annual flood level by 2030.

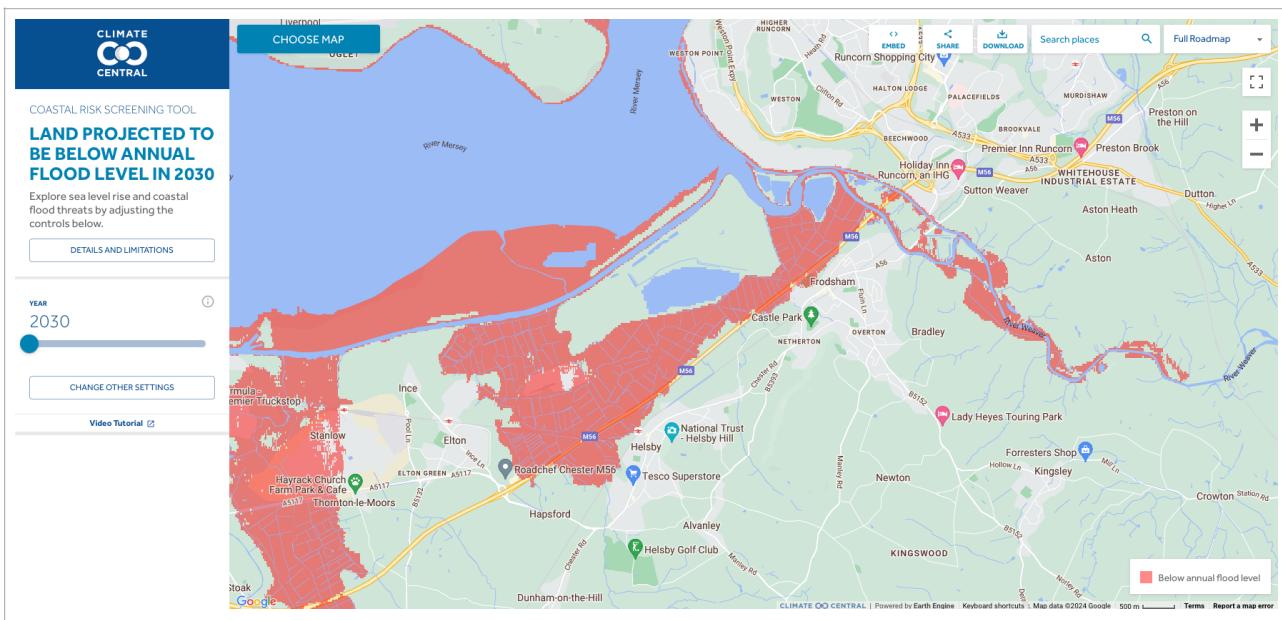


Fig 4: Land projected to be under annual flood level by 2030

Climate change projections indicate increasing flood frequency, rising groundwater levels and sea level rise over the lifetime of the development, with parts of the site projected to fall below annual flood levels within the coming decades. This flood risk is materially different from that associated with upland or agricultural sites and is compounded by the presence of historic tipping lagoons and unlined tanks beneath parts of the site. Flooding in such a setting raises concerns not only about damage to infrastructure, but also about the mobilisation of buried contaminants through saturated soils and fluctuating groundwater levels.

These local concerns are reinforced by the Environment Agency, which has identified unresolved issues relating to flood risk management, safe access and egress during flood events, the creation of isolated “dry islands”, potential impacts on flood conveyance and flood defence assets, and insufficient consideration of water quality and contamination risks in a floodplain context. Taken together, the combination of floodplain location, climate change exposure and uncertain ground conditions represents a compound risk that has not been adequately addressed and warrants a precautionary approach before development proceeds.

Records of flooding events affecting Frodsham in December 2021, December 2023 and April 2024, demonstrating that flood risk in this area is current and escalating, not hypothetical. Water quality in the area already shows contamination by mercury and other compounds that bioaccumulate in the food chain, increasing the risk that disturbance or flooding could exacerbate existing environmental harm. The proposed solar development materially increases the urgency of addressing legacy landfill, flood and ecological risks, and that the site is too constrained and uncertain to be considered suitable as presently planned.

Environmental and Ecological Impacts

The proposed development raises serious environmental concerns due to its location within Frodsham Marshes, an area that is functionally linked to the internationally important Mersey Estuary Special Protection Area and supports significant numbers of migratory and non-breeding birds. Independent assessments, including those by Cheshire Wildlife Trust, identify the site as functionally linked land, meaning it plays an important supporting role for protected bird species, despite its degraded appearance. The scheme would result in the loss of this land, the partial loss of a Local Wildlife Site, and the destruction of land currently secured as mitigation for the existing Frodsham Wind Farm, without providing genuinely additional or equivalent compensatory habitat. Concerns have also been raised about inadequate and inconsistent bird survey data, insufficient consideration of habitat connectivity, and a failure to properly address cumulative impacts with other major developments in the area. While the applicant refers to habitat management and enhancement, the evidence presented indicates a net loss of biodiversity rather than a meaningful contribution to nature recovery. Given the scale and duration of the proposal, and the ecological sensitivity and future restoration potential of the site, these impacts are significant and have not been adequately avoided, mitigated, or compensated for.

Community Infrastructure and Public Benefit

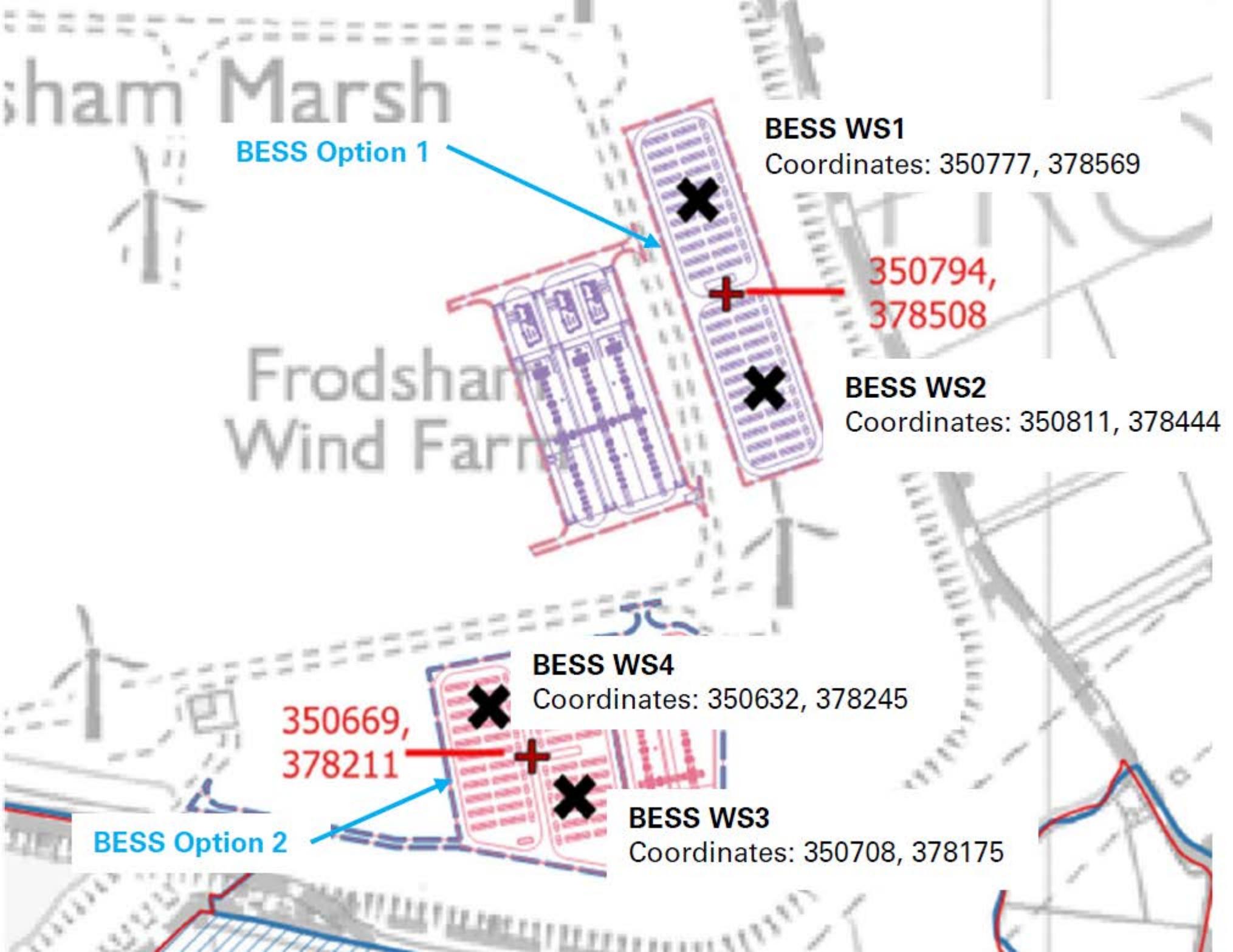
The proposed community infrastructure and benefits package gives rise to concern both in terms of scale and certainty. The offer of a £60,000 community fund appears disproportionately low when set against the scale, duration and impacts of a development covering approximately 600 acres and operating over several decades.

In addition, many of the measures referenced, including beehives, low-mow clover planting, cycle paths, bridleways, an education centre, SSSI interpretation and industrial heritage signage are presented as aspirational public benefits rather than secured commitments. There is currently no clear, legally binding mechanism to guarantee that these features will be delivered, properly maintained, or remain publicly accessible for the lifetime of the project.

This includes a lack of clarity around basic but essential infrastructure such as litter bins, ongoing land management and maintenance schedules. While projects such as SSSI and industrial heritage interpretation, or a potential Saltworks Farm Park café kiosk, could offer genuine local benefit, they are not supported by defined funding, delivery timescales, or long-term management arrangements. Without enforceable obligations, there is a risk that promised community benefits could be reduced,

delayed, or not delivered at all. Given the significant and long-lasting impacts of the scheme on landscape, environment and amenity, community infrastructure should be proportionate, meaningful, and secured through robust and transparent mechanisms, rather than relying on discretionary or non-binding proposals.

Requirement for Landscape Screening


Given the scale of the proposed solar farm and its prominent visibility from Frodsham and Helsby Hills, effective landscape screening is essential. Evidence presented by Frodsham's Active Travel Team demonstrates that the current panel design already results in substantial self-screening, with each row partially shading those behind it at low sun angles. This means that well-designed natural screening, using trees and shrubs positioned in front of panel blocks and maintained at heights of approximately 7-8 metres, could significantly reduce visual impact without materially affecting solar generation. Due to the shallow viewing angle from Frodsham Hill (approximately 5.5 degrees), such planting would screen multiple rows of panels from view, breaking up the monotony of large, industrial-appearing blocks and softening the landscape character. Despite this, the applicant has dismissed tree screening as ineffective without adequately testing or modelling this option. In light of the strong and consistent concern expressed by the local community, and national policy requirements to minimise landscape harm where reasonably practicable, a requirement for meaningful, site-wide natural screening should form a core element of the scheme.

Cycleways and Bridleways

Given the scale of the development and the associated loss of landscape and visual amenity, the provision of high-quality, well-maintained cycleways and bridleways is an essential mitigation rather than an optional benefit. Any new routes should be delivered with durable, all-weather surfacing suitable for year-round use by cyclists, walkers, equestrians and mobility users, and should be secured for the lifetime of the development through clear maintenance and management arrangements. In particular, cycle routes should provide safe and direct connections to National Cycle Route 5 and link coherently with existing local cycling infrastructure to genuinely encourage active travel for residents and visitors. Bridleways should be designed to appropriate widths and surface standards to accommodate equestrian use without conflict or degradation. Without adequate surfacing, long-term upkeep and guaranteed public access, these routes risk becoming unusable in winter conditions and would fail to offset the significant impacts of the scheme on landscape, recreation and wellbeing.

To Conclude...

Taken together, the historic industrial legacy of the site, the presence of unlined tanks and undocumented landfill, the limited scope of contamination testing, the unresolved interaction between flood risk and buried chemicals, and the acknowledged uncertainties surrounding previous condition discharges demonstrate that this site is unusually constrained and complex. While solar energy is supported in principle, the evidence does not demonstrate that this particular location can be developed safely or sustainably without unacceptable risk. In these circumstances, a precautionary, place-based approach is required, and the proposed development should not proceed unless and until these fundamental uncertainties are robustly resolved.

Switch camera

Turn off
center stage

Indicative proposals to create wetland habitat

Frodsham Marsh Farm

Marsh Fd
Alder Lane

rank
Access)

Cell 3 Bird Mitigation Area

Bird Screening
Measures

No.5 tank
(No Access)

Manchester Ship Canal

Weston Marsh Lock
Weaver Estuary
Bird Screening
Measures

3

No.1 tank
(No Access)

8

1

9

10

13

5

6

7

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

1

0

9

8

7

6

5

4

3

2

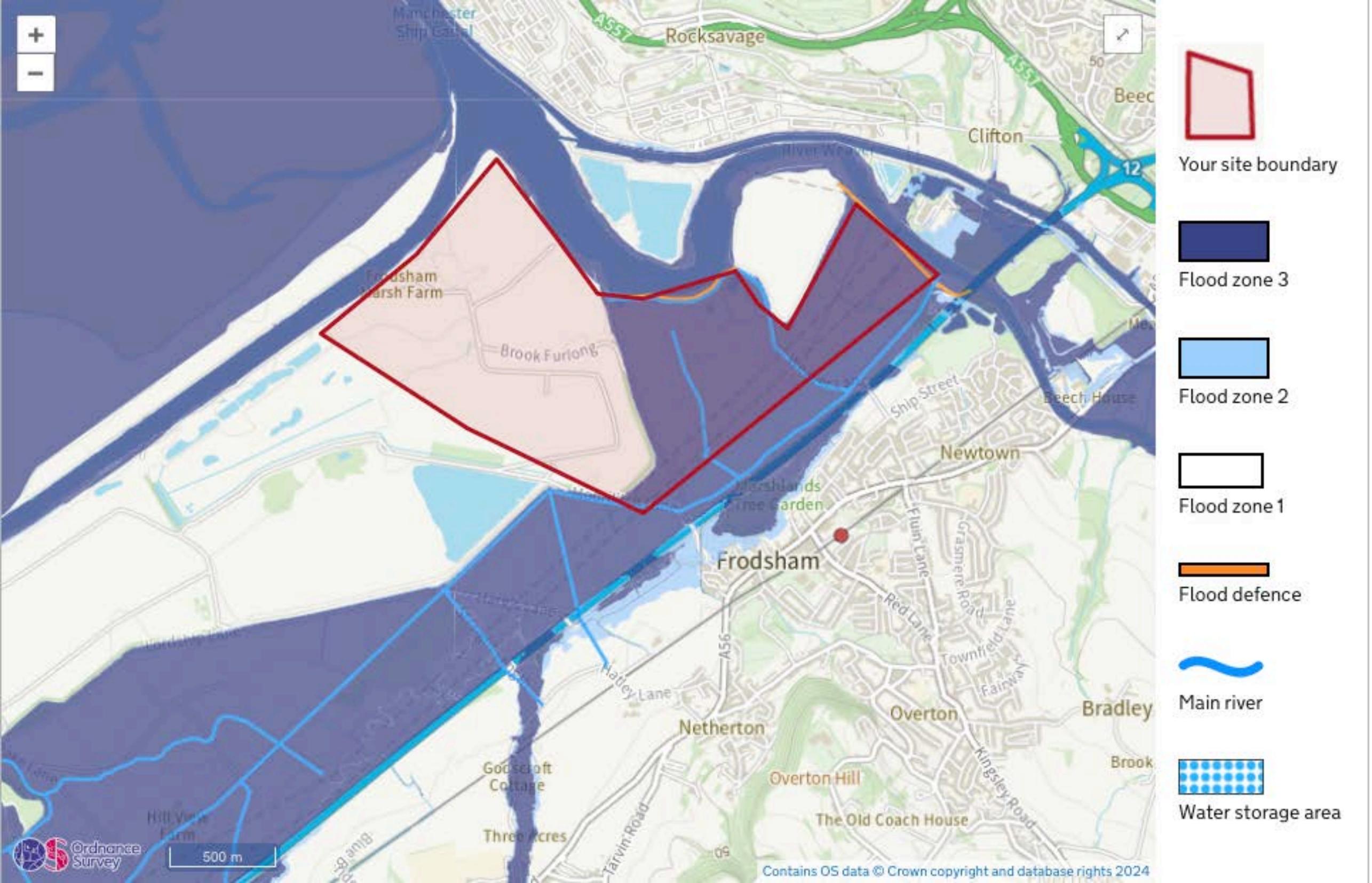
1

0

9

8

7


6

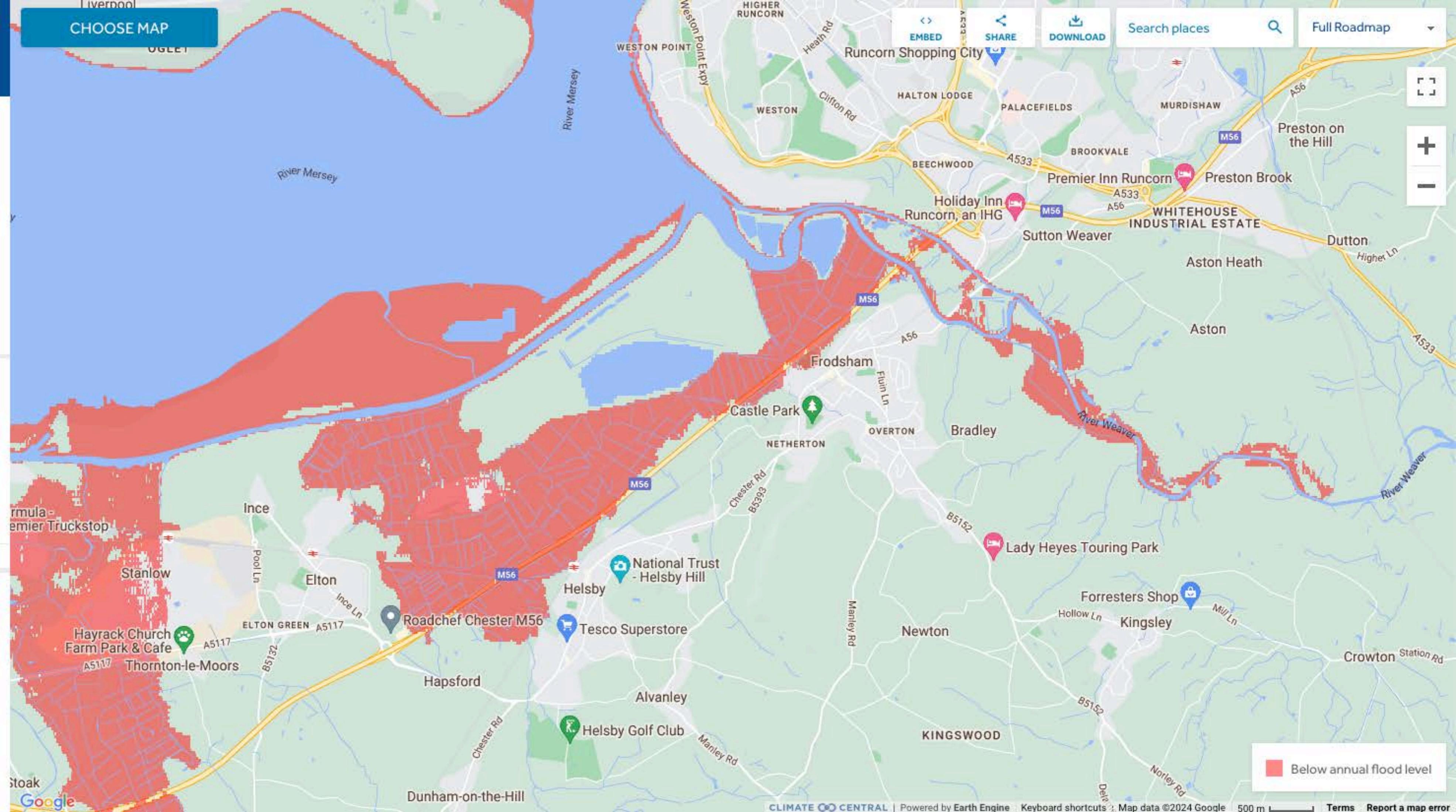
5

4

3

2</

COASTAL RISK SCREENING TOOL


LAND PROJECTED TO BE BELOW ANNUAL FLOOD LEVEL IN 2030

Explore sea level rise and coastal flood threats by adjusting the controls below.

[DETAILS AND LIMITATIONS](#)

YEAR

2030

[CHANGE OTHER SETTINGS](#)[Video Tutorial](#)