

Dean Moor Solar Farm

Environmental Statement: Appendix 2.8 – Agricultural Land Classification

on behalf of FVS Dean Moor Limited

March 2025 Prepared by: Stantec UK Ltd PINS Ref: EN010155 Document Ref: 6.3 Revision: 1

DEAN MOOR SOLAR FARM ENVIRONMENTAL STATEMENT APPENDIX 2.8 – AGRICULTURAL LAND CLASSIFICATION REPORT PLANNING INSPECTORATE REFERENCE EN010155 PREPARED ON BEHALF OF FVS DEAN MOOR LIMITED

The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009, Regulation 5(2)(a)

Project Ref:	EN010155/ES/Appendix 2.8: Agricultural Land Classification
Status:	Final
Issue/ Rev:	1
Date:	March 2025

Contents

1	Introduc	tion	1
	1.1	Background	1
	1.2	Competency	1
	1.3	Methodology	1
	1.4	Structure of the remainder of this report	3
2	National	Planning Policy Framework and Relevant Guidance	4
	2.1	Background	4
	2.2	Overarching National Policy Statement (NPS) for Energy (EN-1) 2024	4
	2.3	National Policy Statement (NPS) for Renewable Energy Infrastructure (EN-3) 2024	4
	2.4	Soil Functions and Soil Health	5
	2.5	Best Practice Guidance	7
3	Agricult	ural Land Classification	9
	3.1	Background	9
	3.2	Climate	9
	3.3	The Site 1	0
	3.4	Soil 1	2
	3.5	ALC Grading at the Site 1	5
4	Summar	y and Conclusions1	8

ean 100r

Figures

Figure 1	Composite Agricultural Land Classification
Figure 2	Auger and Soil Pit Locations – North Area, July 2024

Appendices

- Appendix A Site Boundary
- Appendix B Agricultural Land Classification detailed Post 1988 ALC Survey, Branthwaite, Dean Moor (Ref. 2FCS 50Y9, September 1990)
- Appendix C MAFF ALC08490 Soil Profile Logs
- Appendix D ALC Soil Profile Logs for North Area, July 2024
- Appendix E Soil Health

1 Introduction

1.1 Background

- 1.1.1 This report was commissioned by the Applicant to determine the quality of agricultural land proposed for the Dean Moor Solar Farm which is a solar photovoltaic (PV) energy generating station ('the Proposed Development').
- 1.1.2 The Site (ES Figure 1.1) [**REF: 6.2**] extends to approximately 276.5ha and is located approximately 1.1km east of the Lillyhall Industrial Estate, 600m east of the small village of Gilgarran, approximately 900m west of Branthwaite, and approximately 5km southeast of Workington town centre on the west Cumbrian coast. The hamlet of Branthwaite Edge is directly adjacent to the east of the Site.
- 1.1.3 The Site has been divided into four main areas (Areas A, B, C, and D), as shown in Appendix A.
- 1.1.4 The assessment was made following the Agricultural Land Classification ('ALC') system for England and Wales (see 'Methodology' below).

1.2 Competency

1.2.1 This report has been prepared by a Chartered Scientist ('CSci'), who is a Fellow (F.I. Soil Sci) of the British Society of Soil Science ('BSSS'). The author meets the requirements of the BSSS Professional Competency Standard ('PCS') scheme for ALC¹. The BSSS PCS scheme is endorsed, amongst others, by the Department for Food and Rural Affairs (Defra), Natural England, the Science Council, and IEMA.

1.3 Methodology

1.3.1 This assessment is based upon the findings of a study of published information on climate, geology, and soil in combination with a soil investigation carried out following the Ministry of Agriculture, Fisheries and

¹ British Society of Soil Science. Professional Competency Standard Scheme Document 2 'Agricultural Land Classification' 4: Available at: <u>h</u>

Food (MAFF)² 'Agricultural Land Classification of England and Wales: Revised Guidelines and Criteria for Grading the Quality of Agricultural Land', October 1988 (henceforth referred to as the 'the ALC Guidelines')³.

- 1.3.2 The ALC system provides a framework for classifying land according to the extent to which its physical or chemical characteristics impose longterm limitations on agricultural use. The ALC system divides agricultural land into five grades (Grade 1 'Excellent' to Grade 5 'Very Poor'), with Grade 3 subdivided into Subgrade 3a 'Good' and Subgrade 3b 'Moderate'. Further details of the ALC system and national planning policy implications are set out in Natural England's (NE) 'Guide to assessing development proposals on agricultural land'⁴. Agricultural land classified as Grade 1, 2 and Subgrade 3a falls in the 'best and most versatile' ('BMV') category, as described in NE's guidance on agricultural land.
- 1.3.3 A detailed soil survey and ALC of 206.6ha in the central and southern parts of the Site, i.e., Area C. was carried out by MAFF in 1990. This equates to a detailed coverage of approximately 74%, or nearly three-quarters of the Site. A copy of the MAFF ALC report and map (MAFF. Ref. 2FCS 50Y9, September 1990) is given in Appendix B. The MAFF ALC soil profile data is given in Appendix C.
- 1.3.4 This ALC report and the OSMP (ES Appendix 5.3) [REF: 6.3] have utilised the detailed (Post-1988) MAFF ALC soil profile data, which is complemented by a desk-based study of climate, geology, topography, flood risk, National Soil Map data, and MAFF provisional (Pre 1988) ALC information, and a detailed ALC survey of the remainder of the Site not covered by the MAFF Post-1988 ALC in the north (i.e., Areas A and B) which is approximately 72.9ha or 26% of the Site in July 2024. The

³ Ministry of Agriculture, Fisheries and Food (October 1988). 'Agricultural Land Classification of England and Wales: Revised criteria for grading the quality of agricultural land (ALC011)': Available at . Accessed October 2024

⁴ Natural England (2022) 'Guide to assessing development proposals on agricultural land': Available at <u>https://www.gov.uk/government/publications/agricultural-land-assess-proposals-for-development/guide-to-assessing-</u> <u>development-proposals-on-agricultural-land.</u> Accessed October 2024

² The Ministry of Agriculture, Fisheries and Food (MAFF) was incorporated within the Department for Environment, Food and Rural Affairs (Defra) in June 2001.

location of the 50 auger bores on agricultural land in the ALC study area is shown in Figure 2, and the soil profile information is given in Appendix D.

1.4 Structure of the remainder of this report

- 1.4.1 The remainder of this report is structured as follows:
 - Section 2 National Planning Policy Framework and Relevant Guidance;
 - Section 3 Agricultural Land Classification; and
 - Section 4 Summary and Conclusions.

2 National Planning Policy Framework and Relevant Guidance

2.1 Background

2.1.1 This section of the report sets out the national planning framework in which to assess the opportunities and constraints to development at the Site in terms of the soil resource and agricultural land quality.

2.2 Overarching National Policy Statement (NPS) for Energy (EN-1) 2024

2.2.1 Paragraph 5.11.12-5.11.13 of EN-1⁵ refer to the best and most versatile ('BMV') agricultural land by stating:

'Applicants should seek to minimise impacts on the best and most versatile agricultural land (defined as land in grades 1, 2 and 3a of the Agricultural Land Classification) and preferably use land in areas of poorer quality (grades 3b, 4 and 5). Applicants should also identify any effects and seek to minimise impacts on soil...'

2.3 National Policy Statement (NPS) for Renewable Energy Infrastructure (EN-3) 2024

2.3.1 Of relevance to this report, EN-3⁶ states at paragraph 2.10.33 that:

'The Agricultural Land Classification (ALC) is the only approved system for grading agricultural quality in England and Wales and, if necessary, field surveys should be used to establish the ALC grades in accordance with the current, or any successor to it, grading criteria and identify the soil types to inform soil management at the construction, operation, and decommissioning phases in line with the Defra Construction Code^{7'}.

2.3.2 EN-3 Paragraph 2.10.34 states that:

'Applicants are encouraged to develop and implement a Soil Resources and Management Plan which could help to use and manage soils sustainably and minimise adverse impacts on soil health and potential land contamination. This should be in line with the ambition set out in the Environmental Improvement Plan to bring at least 40% of England's agricultural soils into sustainable management by 2028 and increase this up to 60% by 2030'.

⁵ HM Government (2024). Department for Energy Security and Net Zero (DESNZ). Overarching National Policy Statement (NPS) for Energy (EN-1)

⁶ HM Government (2024). DESNZ. Overarching National Policy Statement (NPS) for Renewable Energy Infrastructure (EN-3):

⁷ HM Government (2009). Department for Environment, Food and Rural Affairs (DEFRA) Code of Practice for the Sustainable Use of Soils on Construction Sites

2.4 Soil Functions and Soil Health

- 2.4.1 Aims and objectives for safeguarding and, where possible, improving soil health are set out in the Government's 'Safeguarding our soils: A strategy for England"⁸ (henceforth referred to as the 'Soil Strategy for England'). This new Soil Strategy for England, which builds on Defra's 'Soil Action Plan for England (2004-2006)', sets out an ambitious vision to protect and improve soil to meet an increased global demand for food and help combat climate change's adverse effects.
- 2.4.2 Paragraph 1.2 of the Soil Strategy for England states that '...soil is a fundamental and essentially non-renewable natural resource, providing the essential link between the components that make up our environment. Soils vary hugely from region to region and even from field to field. They all perform a number of valuable functions⁹ or ecosystem services¹⁰ for society.'
- 2.4.3 The main soil functions are:
 - Food and other biomass production;
 - Environmental interaction: storage (including carbon sequestration), filtering, and transformation;
 - Biological habitat and gene pool;
 - Source of raw materials;
 - Physical and cultural heritage; and
 - Platform for man-made structures: buildings, highways.
- 2.4.4 The vision of the Soil Strategy for England has been developed in the Government's 25 Year Plan for the Environment¹¹. Soil is recognised as an important national resource, and the Plan states that *'We will ensure that resources from nature, such as food, fish and timber, are used more sustainably and efficiently. We will do this [in part] by: ...improving our approach to soil management: by 2030 we want all of England's soils to*

⁸ HM Government (2009) DEFRA. Safeguarding our soils: A strategy for England.

⁹ ISRIC World Soil Information.

¹⁰ HM Government (2013). DEFRA. Ecosystem Services

¹¹ HM Government (2018, last updated 2023). DEFRA. A Green Future: Our 25 Year Plan to Improve the Environment

be managed sustainably, and we will use natural capital thinking to develop appropriate soil metrics and management approaches...'.

Soil Health

- 2.4.5 This part of the report should be read in conjunction with Appendix E 'Soil Health'.
- 2.4.6 The maintenance and improvement of soil health is a material consideration when deciding if development is appropriate on agricultural land. Soil health can be defined as *'…a soil's ability to function and sustain plants, animals, and humans as part of the ecosystem.'*
- 2.4.7 Of relevance to the Proposed Development, the installation of a solar PV array is reversible, i.e., the agricultural land can be returned to its former agricultural productivity once the generation of renewable electricity has ceased, and the solar panels and associated infrastructure is removed.
- 2.4.8 Land management under solar PV panels as grassland can benefit soil health, as described in Appendix E.

'A healthy soil has a well-developed soil structure, where soil particles are aggregated into soil peds (structural units) separated by pores or voids. This allows the free movement of water (precipitation) through the soil and facilitates gaseous exchange between the plant roots and the air. These soils are well aerated (oxygenated), encouraging healthy plant (crop) growth and an abundance of soil fauna and aerobic microbes. These soils often have high amounts of soil organic matter ('SOM'), associated with accumulated plant and animal matter. They thus are a good store of soil organic carbon ('SOC').'

'The greatest benefits in terms of increased SOM, and hence SOC, can be realised through land use change from intensive arable to grasslands. Likewise, SOM and SOC are increased when cultivation of the land for crops (tillage) ceases and the land is uncultivated (zero tillage). Global evidence suggests that zero tillage results in more total soil carbon storage when applied for 12 years or more. Therefore, there is evidence that conversion of land from arable to grassland which is uncultivated over the long-term (>12 years), such as that under solar PV arrays, increases SOC and SOM.' (see Appendix F).

'Soils are habitats for millions of species, ranging from bacteria, fungi, protozoa, and microscopic invertebrates to mites, springtails, ants, worms, and plants. The soil biota is strongly influenced by land management. Modern farming has led to the loss of soil biodiversity. Changes in land management practice and land use can have significant effects on soil biodiversity over relatively short time scales. Reducing the intensity of management, introducing no-tillage management, and converting arable land to pasture, such as grassland under solar PV arrays, has substantial beneficial effects.' (see Appendix F).

'In well-structured soil, water and air can move freely through cracks and pores.' However, 'a poor soil structure prevents water and air movement and increases the risk of runoff. Soil structure is improved when the land is uncultivated over time (no tillage), and SOM content is increased by accumulating plant material, such as roots, in the soil. SOM's aerobic (oxygenated) decomposition helps bind soil particles together into aggregates (peds). Therefore, the conversion of land that is tilled for arable to long-term grassland (no tillage), such as that under solar PV arrays, improves soil structure over time.' (see Appendix F).

2.5 Best Practice Guidance

- 2.5.1 This assessment of agricultural land and soil has drawn on best practice guidance set out in the key documents below:
 - a. BRE National Solar Centre's (2014) '*Agricultural Good Practice Guidance for Solar Farms*'¹². This provides best practice guidance on the construction of solar farms;
 - b. The Institute of Civil Engineering (ICE) provides guidance on assessing agricultural land quality and soil in the '*Environmental Impact Assessment Handbook: A practical guide for planners, developers and communities*^{'13};
 - c. The IEMA has produced a 'New Perspective on Land and Soil in Environmental Assessment'¹⁴, which encourages 'a new approach to assessing soil functions, ecosystem services and natural capital provided by land and soils';
 - d. Defra has published 'Safeguarding our Soils A Strategy for England'¹⁵. The Soil Strategy was published in tandem with a 'Code of Practice for the Sustainable Use of Soils on Construction Sites'. The Soil Strategy for England, which builds on Defra's 'Soil Action Plan for England (2004-2006)', sets out an ambitious vision to protect and improve soil to meet an increased global demand for food and to help combat the adverse effects of climate change;
 - e. This assessment also considers recent guidance produced by the Soils in Planning Construction Task Force (Lancaster University et al) regarding 'Building on soil sustainability: Principles for soils in planning and construction'¹⁶. This report contains guidance for local authorities, contractors, clients, developers, and design teams on managing soil in construction and planning. This guidance for conserving soil resources follows the principles of sustainable development and the circular economy (defined as 'The circular economy is a model of production and consumption, which involves sharing, leasing, reusing, repairing, refurbishing, and recycling existing materials and products as long as

¹² BRE (2014) 'Agricultural Good Practice Guidance for Solar Farms' (Ed J Scurlock)

¹³ Askew, R.W. Section 7.4 'Soil' and Section 7.11 'Agricultural Land; in Institute of Civil Engineers (ICE) (2021) 'Environmental Impact Assessment Handbook: A practical guide for planners, developers and communities, Third edition'

¹⁴ Institute of Environmental Assessment and Management (IEMA) (2022) 'A New Perspective on Land and Soil in Environmental Impact Assessment'

¹⁵ HM Government (2009). DEFRA. Safeguarding our soils: A strategy for England'

¹⁶ Soils in Planning Construction Task Force (September 2022) 'Building on soil sustainability: Principles for soils in planning and construction': available Accessed October 2024

possible. In this way, the life cycle of products is extended. In practice, it implies reducing waste to a minimum. When a product reaches the end of its life, its materials are kept within the economy wherever possible. These can be productively used again and again, thereby creating further value¹⁷⁷; and

- f. Best practice for the handling of soil is set out in the Institute of Quarrying (2021) 'Good Practice Guide for Handling Soils in Mineral Workings' (Sheets A to E are of main relevance to this assessment)¹⁸.
- g. The Proposed Development will follow guidance in the '*England Peat Action Plan*¹⁹', which provides an integrated plan for the management, protection and restoration of our upland and lowland peatlands, so that they deliver benefits for nature and the climate.

¹⁷ European Parliament (2015) Definition of a Circular Economy: available at:

Accessed October 2024

¹⁸ Institute of Quarrying (2021) 'Good Practice Guide for Handlings Soils in Mineral Workings'
 ¹⁹ HM Government (2021). DEFRA. England Peat Action Plan'

3 Agricultural Land Classification

3.1 Background

- 3.1.1 This section of the report sets out the national and local planning framework to assess the opportunities and constraints to development at the Site in agricultural land quality terms.
- 3.1.2 As described in the ALC Guidelines, the main physical factors influencing agricultural land quality are:
 - Climate;
 - Site;
 - Soil; and
 - Interactive Limitations.
- 3.1.3 These factors are considered below.

3.2 Climate

- 3.2.1 Climate data for this study area were derived from the published agricultural climate dataset Climatological Data for Agricultural Land Classification (Meteorological Office 1989)²⁰ using standard interpolation procedures for 5km grid points around the study area is given in Table 3.1 below.
- 3.2.2 Parameters used for assessing overall climate are accumulated temperature, a measure of relative warmth, and average annual rainfall, a measure of overall wetness. Regarding the ALC Guidelines, Figure 1 *'Grade according to climate'* on page 6, agricultural land at the Site cannot be graded higher than Subgrade 3b for altitudes between 110m and 130m, and no higher than Grade 4 for altitudes greater than 130m, in the absence of any other limiting factor, i.e., site, soil and/or interactive limitations (see Appendix B also).

²⁰ Meteorological Office (1989) 'Climatological Data for Agricultural Land Classification: Gridpoint datasets of climatic variables, at 5km intervals, for England and Wales (ALC010)': Available at:

Climate Parameter	Northeast BGR* NY044242	Central BGR NY046229	Southwest BGR NY412223
Average Altitude (m)	117	144	197
Average Annual Rainfall (mm)	1390	1459	1519
Accumulated Temperature above 0°C (January – June)	1273	1243	1175
Field Capacity Days (FCD)	294	303	287
Moisture Deficit (mm) Wheat	51	42	40
Moisture Deficit (mm) Potatoes	27	16	33
Grade According to Climate	3b	4	4

Table	3.1:	ALC	Climate	Data	for	the S	Site
-------	------	-----	---------	------	-----	-------	------

*British Grid Reference (BGR)

- 3.2.3 The average annual rainfall is between 1390mm-1519mm. Agricultural land at the Site is predicted to be at field capacity (i.e., the amount of soil moisture or water content held in the soil after excess water has drained away) for between 287 and 303 Field Capacity Days ('FCD') per year, mainly over the late autumn, winter, and early spring. The combination of topsoil texture, drainage status (Wetness Class) of the profile, and number of FCD affects the degree to which agricultural land is limited by soil wetness.
- 3.2.4 The climate at the Site falls in the >225 FCD category for assessing the ALC grade according to soil wetness (Table 6 of the ALC Guidelines), as described in more detail under *'interactive limitations'* below.

3.3 The Site

3.3.1 As described in section 1.1, the Site extends to 276.5ha. The Site's location and boundary are shown in Figure 1 and Appendix A.

- 3.3.2 With regard to the ALC Guidelines, agricultural land quality can be limited by one or more of three main site factors as follows:
 - Gradient;
 - Micro-relief (i.e., complex change in slope angle over short distances); and
 - Risk of flooding.

Gradient and micro-relief

- 3.3.3 The land at the Site is located on a north-facing slope with the highest elevation in the southwest corner (BGR NY041223) at an approximate elevation of 197mAOD.
- 3.3.4 The altitude of the land descends towards the centre at approximately
 144mAOD (BNG NY046229). The lowest elevation occurs in the northeast
 (BNG NY044242) at approximately 117mAOD.
- 3.3.5 The quality of agricultural land at the Site is limited by gradient southern end of Area C (i.e., 16°-30°, Appendix B). The gradient can limit agricultural land quality to Subgrade 3b (i.e., >7°-11°), Grade 4 (i.e., >11°-18°), or Grade 5 (i.e., >18°), as per Table 1 of the ALC Guidelines. It is also very likely that the quality of agricultural land at the Site is limited by micro-relief in parts of the Site, i.e., complex changes in slope angle and direction over short distances, and/or due to the presence of boulders or rock outcrops, even on level ground or gentle slopes, that severely limit the use of agricultural machinery.

Flood limitation

3.3.6 From the Government's Flood Map for Planning website²¹, the Site is mainly in Flood Zone 1, with a low risk of flooding. The ALC Guidelines take account of the frequency, duration, and timing of flooding in the summer and winter (Table 2 *'Grade according to flood risk in summer'* and/or Table 3 *'Grade according to flood risk in winter'*). There is no evidence the grade of agricultural land at the Site is limited by flood risk during the summer or winter following the ALC Guidelines.

²¹ Government Flood Map for Planning: Available at: <u>https://flood-map-for-planning.service.gov.uk/.</u> Accessed October 2024

3.4 Soil

Geology/soil parent material/soil association

- British Geological Survey ('BGS') information available online²² has been used to identify the Bedrock underlying the Site and any Superficial (Drift)
 Deposits over the Bedrock. This information helps to determine the parent material from and within which a soil has formed.
- 3.4.2 The BGS information indicates that the Site is underlain predominantly by mudstone, siltstone, and sandstone in the Pennine (Lower and Middle) Coal Measures Formation. There are narrow bands of sandstone within the Pennine Middle Coal Measures Formation. A pocket of land in the southeast of Area C (BGR NY053229) is underlain by mudstone, siltstone, and sandstone in the Stainmore Formation. The highest land in the Site's southern end (within Area C) is underlain by sandstone in the Whitehaven Sandstone Formation.
- 3.4.3 In turn, the bedrock is predominantly covered by glacial till (Devensian, Diamicton), but there are large pockets over the Site in Areas A-D where no superficial deposits are recorded/no information. There are two narrow and isolated pockets of peat in the southwest of Area C, i.e., BGR NY040232 and BGR NY046223. There are two small pockets of Alluvium (clay, silt, sand, and gravel) in Area C of the Site near Rigg House (off-Site to the east) at BNG NY049236, and in the southeast NY051227 near a watercourse near to, or a tributary of, Thief Gill, at the base of a steep slope in Area C of the Site.

²² British Geological Survey. Geology Viewer: Available at

Published information on soil

- 3.4.4 The National Soil Map²³ shows that soils in the Brickfield 3 Association predominantly cover agricultural land at the Site. A pocket of soil in the Rivington 2 Association has developed from the sandstone in the southwest corner of the Site, within Area C. There is a narrow band of soil in the Wilcock 1 Association along the southern boundary of Area C, to the south of Thief Gill, on land underlain by peat.
- 3.4.5 As described by the Soil Survey of England and Wales ('SSEW')²⁴, the Brickfield 3 Association consists of:

"...predominantly of loamy and clayey surface-water gley soils belonging to the Brickfield, Dunkeswick and Hallsworth series. It is widespread throughout Northern England...usually below 250 m O.D on gentle to moderate slopes. The parent material is a greyish till or Head derived from Carboniferous and other Palaeozoic sandstones and shales. The loamy textures are due to the preponderance of sandstone in the drift. Greater proportions of shale give rise to more clayey drift. Brickfield soils, cambic stagnogley soils, are clay loam throughout and commonly contain many sandstones or, locally shales; at lower altitudes hard igneous and other erratic stones are also present. Stone content frequently increases with depth...The main soils are seasonally waterlogged (Wetness Class IV) but, with satisfactory drainage, may be in Wetness Class III where the annual rainfall is less than about 900 mm. They have slowly permeable loamy and clayey subsurface horizons which cause surface waterlogging'.

3.4.6 The SSEW describes how the Rivington 2 Association consists of:

'...loamy brown earths and brown podzolic soils over Palaeozoic, predominantly Carboniferous, sandstones and shales' '...moderate to steep valley sides, hills, and ridges'. [Elevations are primarily below 450 mAOD]. The climate is 'cold and wet in the uplands but milder and drier in the foothills and lowlands. The two soils which dominate the association, the Rivington series, typical brown earth, and the Withnell series, typical brown podzolic soils, are both coarse loamy, welldrained, and overlie hard sandstone within 80 cm. The subsidiary fine loamy Heapey series, stagnogleyic brown earths, overlies shale and is occasionally waterlogged...The major soils are well drained (Wetness Class I), but the Heapey series is seasonally waterlogged (Wetness Class III). Excess winter rainwater generally passes rapidly downwards through the permeable subsoil, although there is some run-off on steep slopes'.

3.4.7 The SSEW describes how the Wilcocks 1 Association:

"...contains strongly gleyed soils with peaty or humose topsoils. These are the loamy Wilcocks series and the fine loamy over clayey Kielder series (both cambic stagnohumic gley soils) and the coarse loamy Fordham series of the

 ²³ Cranfield University (2023) Soil site report, Soil Report for location 304713E, 523575N, 3km x 3km, Cranfield University
 ²⁴ Soil Survey of England and Wales, National Soil Resource Institute, Cranfield University (2023). The Soils Guide: available

Accessed October 2023

typical humic gley soils. They are seasonally waterlogged, stony soils in greyish drift derived from Carboniferous and Lower Palaeozoic rocks, occurring on gentle to moderate slopes...The Wilcocks series has an acid organic surface laver 10 to 40 cm thick, with underlying clav loam or sandy clav loam horizons which are grev and strongly mottled, although the mineral layer immediately below the peat is normally stained with organic matter. The Kielder series is similar but becomes clayey at depth. Unlike these soils, the Fordham series is sandy loam and gleving is not caused by a slowly permeable subsoil but by high groundwater levels. Stone content frequently increases with depth; stones are often sandstones and gritstones but may be shale fragments, or occasionally igneous and other erratics....The main soils are severely waterlogged near the surface (Wetness Class V or VI). the wetness being due to a combination of high rainfall, slowly permeable subsoil, gentle relief, and a flow of water from the nearby Winter Hill and Belmont associations. Winter rainwater is not absorbed and runs off rapidly. The soils are not droughty because of their large available water capacity and the low moisture deficits in the districts where they occur.'

ALC and soil surveys

- 3.4.8 A log of the soil profiles recorded by MAFF on Site is given in Appendix C. MAFF report (Appendix B) that in the central part of the *Site '… the underlying Coal Measures are largely hidden by a superficial layer of glacial and post glacial drift. This consists mainly of medium to heavy textured, moderately stony boulder clay. Topsoils tend to be of medium, sometimes peaty clay loam, over a clay loam or sandy clay loam, slowly permeable subsoil (Soil Wetness Class IV or V). Moderate stoniness is common throughout many soil profiles and often makes augering below 80 cm depth difficult.'*
- 3.4.9 MAFF describes (Appendix B) how soils on higher ground in Area C of the Site have 'steeply sloping escarpments' which are '... underlain by Coal Measure shales at the foot of the hillside and by the reddish Whitehaven Sandstone on the higher ground. Soils on the Coal Measure consists of medium or heavy, sometimes humose clay loam topsoils over gleyed, slowly permeable clay or shale subsoils (Wetness Class V). Soils on the sandstone vary from deep peat (Wetness Class VI) to thin peaty soils over sandstone rubble.'
- 3.4.10 A log of the 50 auger bores examined by Askew Land & Soil Limited in July 2024 is given in Appendix D.

3.5 ALC Grading at the Site

- 3.5.1 MAFF (Appendix B) has determined that 'Subgrade 3b land is widespread on the lower lying land in the north. Topsoils consist of medium clay loam or silty clay loam over a similar or heavier textured slowly permeable subsoil (Wetness Class IV). Soil wetness along with the overriding climatic limitation are the principal limiting factors on this land.'
- 3.5.2 MAFF (Appendix B) has also determined that 'Grade 4 land occurs across the central part of the site below the escarpment and as smaller areas on the high ground adjoining the southern boundary. Soils on the lower lying land are similar to those in the subgrade 3b area, but are limited to Grade 4 by the overall climatic limitation applying to all land above 135 m a.o.d. On the higher ground soils consist generally of thin peaty topsoils over relatively free draining sandy loam or sandstone rubble. These are also restricted to Grade 4 by the overall climatic limitation. The smaller area of Grade 4 land in the northwest corner is restricted to this grade by wetness.'
- 3.5.3 Finally, MAFF (Appendix B) has determined that land in Grade 5 '…occurs mainly on the sandstone area in the south. Soils on the gently and moderately sloping areas consists of deep peat or peaty topsoils over waterlogged gleyed slowly permeable heavy clay loam subsoils. Soils of this type fall within wetness Class VI and are restricted to the Grade by severe wetness problems which are very difficult to remedy. On the very steeply sloping ground, especially in Thief Gill, soils are relatively welldrained, but are restricted to Grade 5 by slopes in excess of 18.'
- 3.5.4 The area of land in each ALC grade has been determined from the MAFF Post 1988 ALC Survey (Appendix B) and complemented by a desk-based prediction of ALC grades from the climate, geology, topography, flood, soil, and MAFF provisional (Pre 1988) ALC information in Section 3.0 of this report.
- 3.5.5 For the approximately 72.9ha of land within the northern part of the Site,i.e., Areas A and B of the Site, north of the Gilgarran Road and south ofthe Branthwaite Road, all the agricultural land is developed on Brickfield 3

soil (loamy and clayey surface-water gley soils in Wetness Class IV) and has an altitude below 130m (i.e., overriding climate limitation to Subgrade 3b). From the information earlier in this Section, and from the assessment of 50 auger bores on agricultural land (see Figure 2 and Appendix D), it has been determined that the land is limited by soil wetness to mainly Grade 4 (i.e., 294 FCD, heavy clay loam topsoil, and slowly permeable clay subsoil that is seasonally waterlogged for long periods over the winter in Wetness Class IV), with some Subgrade 3b(i.e., 294 FCD, medium clay loam topsoil, and slowly permeable clay subsoil that is seasonally waterlogged for long periods over the winter in Wetness Class IV). The remainder of the land (Area D) is classified as non-agricultural/other land, which includes roads, woodland, scrub/trees, and wind turbine infrastructure (i.e., turbines, roads, and hard standing).

3.5.6 The land area in each ALC grade has been measured from a composite ALC map given in Figure 1, and the area (ha) and proportion (% of the Site) are given in Table 3.2.

ALC Grade	MAFF Post 1988 ALC of Area C (Ha) (see Appendices B and C)	Detailed ALC in July 2024 Area of Areas A and B (Ha) (see Appendix D)	Total Area (Ha)	Total Area (%)
Grade 1 (Excellent)	0	0	0	0
Grade 2 (Very Good)	0	0	0	0
Subgrade 3a (Good)	0	0	0	0
BMV Agricultural Land, i.e., total ALC Grade 1, Grade 2, and Subgrade 3a	0	0	0	0
Subgrade 3b (Moderate)	41.7	7.3	49	17.5
Grade 4 (Poor)	128.7	50.1	178.8	64.0
Grade 5 (Very Poor)	35.1	0	35.1	12.6

Table 3.2: Composite ALC Grading for the Site

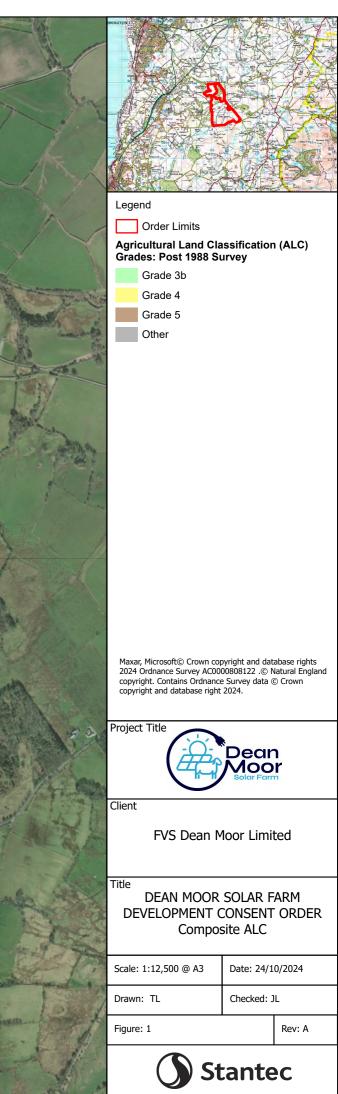
ALC Grade	MAFF Post 1988 ALC of Area C (Ha) (see Appendices B and C)	Detailed ALC in July 2024 Area of Areas A and B (Ha) (see Appendix D)	Total Area (Ha)	Total Area (%)
Other Land / Non- agricultural (e.g., roads, woodland)	1.1	15.5	16.6	5.9
Total	206.6	72.9	279.5	100

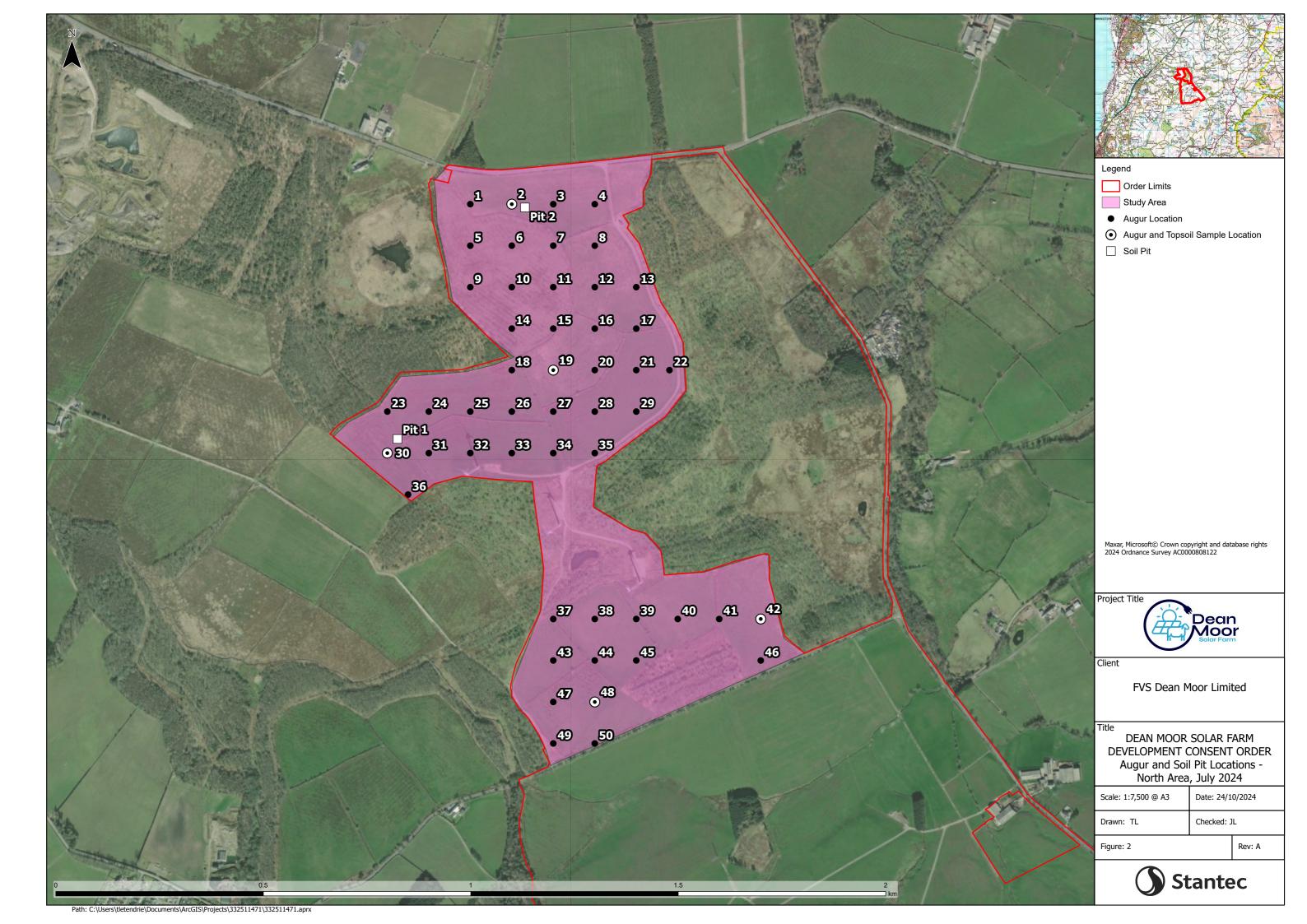
4 Summary and Conclusions

- 4.1.1 This ALC report was commissioned by the Applicant to determine the quality of agricultural land at the Site for the Proposed Development. The assessment was made following the Agricultural Land Classification system for England and Wales (see 'Methodology' in section 1.3).
- 4.1.2 BGS information indicates the Site is underlain by predominantly by mudstone, siltstone, and sandstone in the Pennine (Lower and Middle) Coal Measures Formation. There are narrow bands of sandstone within the Pennine Middle Coal Measures Formation. A pocket of land in the southeast (BGR NY053229) is underlain by mudstone, siltstone, and sandstone in the Stainmore Formation. The highest land in the Site's southern end is underlain by sandstone in the Whitehaven Sandstone Formation.
- 4.1.3 In turn, the bedrock is predominantly covered by glacial till (Devensian, Diamicton), but there are large pockets over the Site where no superficial deposits are recorded/no information. There are two narrow and isolated pockets of peat in the southwest of Area C, i.e., BGR NY040232 and BGR NY046223. There are two small pockets of Alluvium (clay, silt, sand, and gravel) in Area C of the Site, near Rigg House (off Site to the east) at BNG NY049236, and in the southeast (Area C) NY051227 near a watercourse near to, or a tributary of, Thief Gill, at the base of a steep slope.
- 4.1.4 The National Soil Map shows that agricultural land at the Site is predominantly covered by soils in the Brickfield 3 Association. There is a pocket of soil in the Rivington 2 Association, which has developed from the sandstone in the southwest corner of the Site (Area C). There is a narrow band of soil in the Wilcock 1 Association along the southern boundary on land underlain by peat.
- 4.1.5 MAFF has carried out a detailed (Post-1988) ALC and soil survey of Area C which is approximately 206.6ha (or approximately 74%, or nearly three-

quarters of the Site) in 1990. A copy of the MAFF ALC report is given in Appendix B, and the MAFF ALC soil profile data is given in Appendix C.

- 4.1.6 The area of land in each ALC grade has been determined from the MAFF Post 1988 ALC Survey (Appendix B) and complemented by a desk-based prediction of ALC grades from the climate, geology, topography, flood, soil, and MAFF provisional (Pre 1988) ALC information in section 3 of this report.
- 417 For the approximately 72.9ha of land within the northern part of the Site, i.e., Areas A and B, south of the Branthwaite Road and north of the Gilgarran Road, all of the agricultural land is developed on Brickfield 3 soil (loamy and clayey surface-water gley soils in Wetness Class IV). It has an altitude below 130m (i.e., overriding climate limitation to Subgrade 3b). From the information earlier in this section, and from the assessment of 50 auger bores on agricultural land (see Figure 2 and Appendix D), it has been determined that the land is limited by soil wetness to mainly Grade 4 (i.e., 294 FCD, heavy clay loam topsoil, and slowly permeable clay subsoil that is seasonally waterlogged for long periods over the winter in Wetness Class IV), with some Subgrade 3b (i.e., 294 FCD, medium clay loam topsoil, and slowly permeable clay subsoil that is seasonally waterlogged for long periods over the winter in Wetness Class IV). The remainder of the land is classified as non-agricultural/other land (Area D), which includes roads, woodland, scrub/trees, and wind turbine infrastructure (i.e., turbines, roads, and hard standing).
- 4.1.8 The land area (ha) in each ALC grade has been measured from a composite ALC map in Figure 1. It has been determined the Site is predominantly classified as Grade 4, i.e., approximately 178.8ha (or 64% of the Site). A further approximately 49.0ha (or 17.5% of the Site) is Subgrade 3b, and approximately 35.1ha (or approximately 12.6% of the Site) is Grade 5. The remainder of the Site was classified as non-agricultural/other land consisting of roads, woodland, scrub/trees, and wind turbine infrastructure (i.e., 16.6ha, or 5.9% of the Site). This Site


does not have any Best and Most Versatile (BMV) agricultural land in ALC Grades 1, 2, or Subgrade 3a.


- 4.1.9 The Proposed Development would follow best practices for soil management to help improve soil health, such as:
 - Increasing SOM, and hence SOC;
 - Increasing soil biodiversity; and
 - Improving soil structure.
- 4.1.10 This is consistent with aims and objectives for improving soil health in the Government's 25 Year Plan for the Environment and the Soils in Planning Construction Task Force's (including Cornwall Council, Lancaster University, and The Landscape Institute et al) *'Building on soil sustainability: Principles for soils in planning and construction'.*
- 4.1.11 The impact of the Proposed Development on agricultural land and soils is considered a potentially reversible, temporary, albeit relatively long-term, and typically time-limited development. It would have a much lower impact than a permanent built development, including soil sealing and permanent loss of agricultural land.
- 4.1.12 The Proposed Development will allow for continued agricultural use where applicable and/or encourage biodiversity improvements around arrays. A DCO Requirement will secure appropriate agricultural land management and biodiversity enhancement during the operational lifetime of the Proposed Development and thus retain some degree of agricultural use, as well as requiring the Site to be decommissioned and restored to its former condition and ALC grade when the operational phase expires.
- 4.1.13 It is considered that the inherent soil, site, and climatic properties required to determine the ALC grade would remain unaffected by the Proposed Development and not alter the ALC grade in the long term. Therefore, the reversible Proposed Development on agricultural land at this Site would not significantly harm national agricultural interests in terms of paragraph 5.11.12-5.11.13 of EN-1 and 2.10.33 of EN-3 (See section 2.0).

Figures

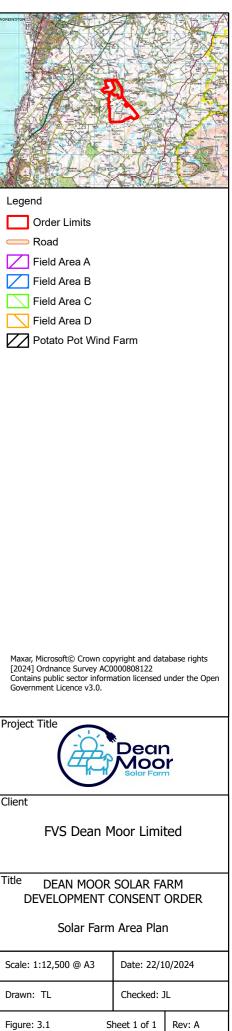
Appendix A Site Boundary

Branthwaite Road

Field Area A - Land south of Branthwaite Road (approx. 40.3ha)

> Field Area D - Land connecting Areas A and B, including Potato Pot Wind Farm (the 'Wind Farm'), Gilgarran Road between Areas B and C, and Branthwaite Edge Road. (approx. 13.4ha)

Field Area B - Land south of Branthwaite Road and north of Gilgarran Road (approx. 19.9ha)


Path: C:\Users\tletendrie\Documents\ArcGIS\Projects\332511471\332511471.aprx

Field Area C - Land south of Gilgarran Road and north of Dean Cross Road (approx. 203ha)

Dean Cross Road

Gilga

Stantec

Appendix B Agricultural Land Classification detailed Post 1988 ALC Survey, Branthwaite, Dean Moor (Ref. 2FCS 50Y9, September 1990) AGRICULTURAL LAND CLASSIFICATION

CUMBRIAN COAL LOCAL PLAN DEAN MOOR, BRANTHWAITE

MAFF LEEDS REGIONAL OFFICE

.

September 1990 Ref 2FCS 50¥9

.

Lds.AL2.Dean.Moor

CONTENTS

- 1. Introduction and Site characteristics
- 2. Agricultural Land Classification

MAP

1. Agricultural Land Classification

AGRICULTURAL LAND CLASSIFICATION

CUMBRIAN COAL LOCAL PLAN: - DEAN MOOR, BRANTHWAITE, CUMBRIA

1. Introduction and Site Characteristics

Dean Moor is located about 7 km south east of Workington centred around grid reference NY 047230, immediately south of the existing Potato Pot open cast coal site. The eastern, northern and southern boundaries are formed by the minor roads, whilst woodland forms much of the western boundary. It covers a total area of 206.6 hectares, nearly all of which is currently in agricultural use.

ALC survey work was carried out in September 1990 when soils were examined using hand auger borings at points predetermined by the National Grid. The density of borings was one per hectare. In addition small soil examination pits were dug to study soil structure in more detail.

1.1 Relief and Climate

Average altitude is about 140 m a.o.d. but ranges from a minimum of 110 m a.o.d. on the northern boundary to a maximum of 210 m a.o.d. on the southern edge of the site.

Salient climatic parameters at Dean Moor vary according to altitude and are as follows:-

Altitude (m)		110	130	200
Average Annual Rainfall (mm)	1359	1418	1627
Accumulated Temperature al	bove 0°C (Jan-June)	1282	1259	1180
Field Capacity Days		289	297	327
Moisture Deficit (mm) Who	eat	53	46	25
Pot	tatoes	30	21	0

The above combinations of rainfall and temperature place an overall climatic limitation of subgrade 3b on land between 110 m and 130 m a.o.d and Grade 4 on land above 130 m a.o.d.

Relief is moderately undulating on the central and northern parts of the site and slopes are rarely steep enough to limit the use of agricultural machinery. The southern part of the site, however, consists of a steeply to very steeply sloping (16-30°) north facing hillside cut by a narrow gill with precipitous slopes exceeding 36°. In much of this area gradient imposes an overall limitation on ALC grade.

1.2 Geology, Soils and Drainage

North of the hillside forming the southern part of the site, the underlying Coal Measures are largely hidden by a superficial layer of glacial and post glacial drift. This consists mainly of medium to heavy textured, moderately stony boulder clay. Topsoils tend to be of medium, sometimes peaty clay loam, over a clay loam or sandy clay loam, slowly permeable subsoil (Soil Wetness Class IV or V). Moderate stoniness is common throughout many soil profiles and often makes augering below 80 cm depth difficult.

The steeply sloping escarpment in the south is underlain by Coal Measure shales at the foot of the hillside and by the reddish Whitehaven Sandstone on the higher ground. Soils on the Coal Measure consists of medium or heavy, sometimes humose clay loam topsoils over gleyed, slowly permeable clay or shale subsoils (Wetness Class V). Soils on the sandstone vary from deep peat (Wetness Class VI) to thin peaty soils over sandstone rubble.

1.3 Land Use

The northern and eastern lower lying parts of the site, below about 150 m a.o.d, are almost all under productive improved pasture. The high ground in the south consists largely of rough moorland vegetation containing a

few partially improved areas. There is also an area of rough boggy ground in the north west corner of the site and a small patch of newly planted woodland in the central northern area.

1.4 Agricultural Land Classification

1.4.1 Subgrade 3b (41.7 hectares, 20% of total area)

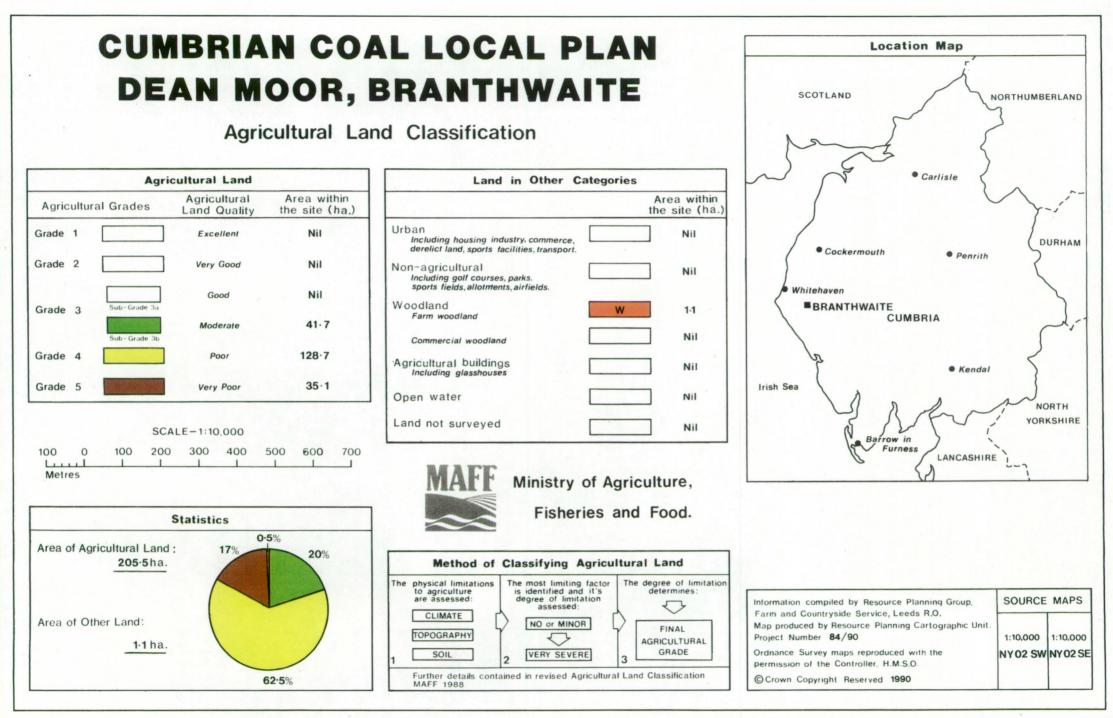
Subgrade 3b land is widespread on the lower lying land in the north. Topsoils consist of medium clay loam or silty clay loam over a similar or heavier textured slowly permeable subsoil (Wetness Class IV). Soil wetness along with the overriding climatic limitation are the principal limiting factors on this land.

1.4.2 Grade 4 (128.7 hectares, 62.5% of total area)

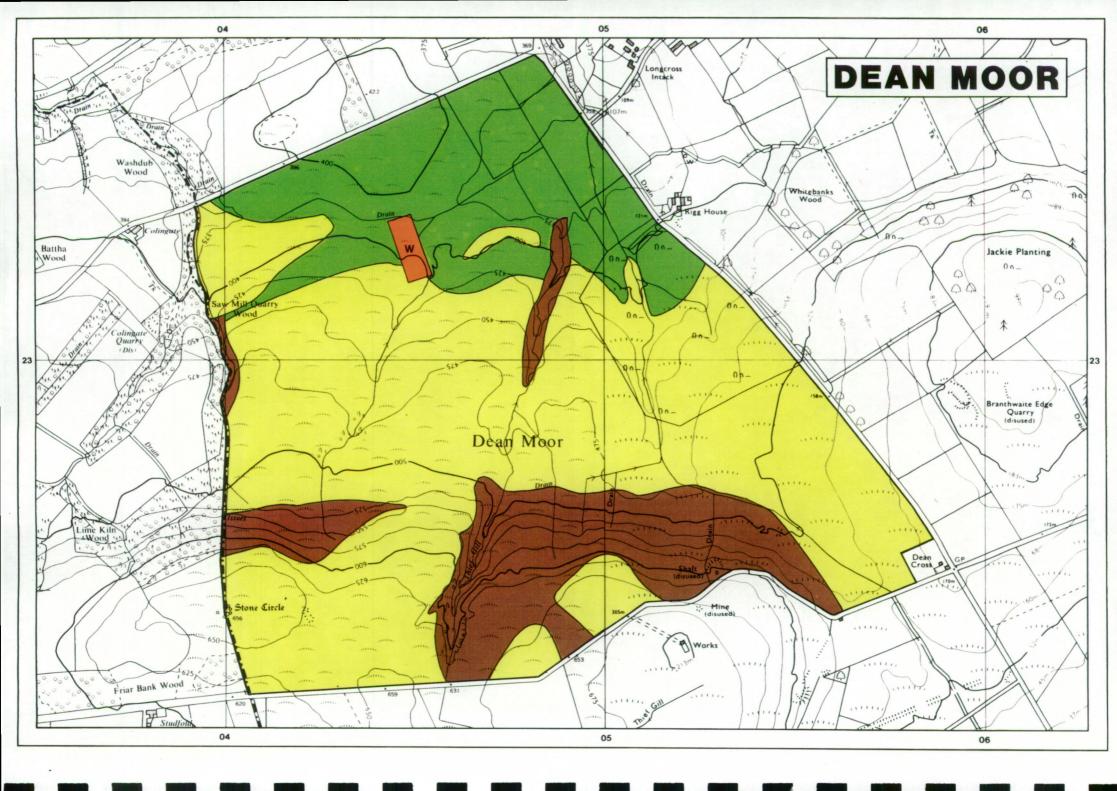
Grade 4 land occurs across the central part of the site below the escarpment and as smaller areas on the high ground adjoining the southern boundary. Soils on the lower lying land are similar to those in the subgrade 3b area, but are limited to Grade 4 by the overall climatic limitation applying to all land above 135 m a.o.d. On the higher ground soils consist generally of thin peaty topsoils over relatively free draining sandy loam or sandstone rubble. These are also restricted to Grade 4 by the overall climatic limitation. The smaller area of Grade 4 land in the north west corner is restricted to this grade by wetness.

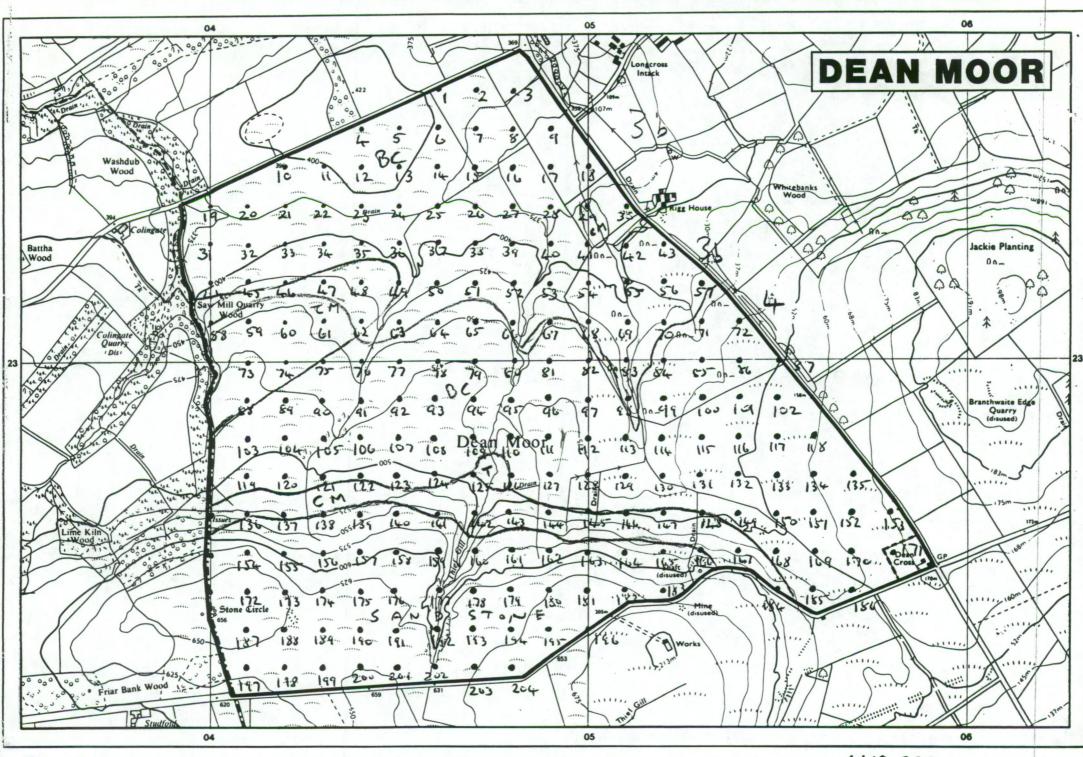
1.4.3 Grade 5 (35.1 hectares, 17% of total area)

Land in this Grade occurs mainly on the sandstone area in the south. Soils on the gently and moderately sloping areas consists of deep peat or peaty topsoils over waterlogged gleyed slowly permeable heavy clay loam subsoils. Soils of this type fall within Wetness Class VI and are restricted to the Grade by severe wetness problems which are very


3

difficult to remedy. On the very steeply sloping ground, especially in Thief Gill, soils are relatively well drained, but are restricted to Grade 5 by slopes in excess of 18°.


1.4.4 Non Agricultural Land (1.1 hectares) 0.5% of total area.


This consists of the area of newly planted woodland in the central northern part of the site.

Resource Planning Group Leeds Regional Office

.

PHILLIPA HAS PARTIALLY COMPLETED A.L.C. FINAL ARTWORK.

Appendix C MAFF ALC08490 Soil Profile Logs

JOBNO	SOILPIT	PROF	ILE GRIDREF	LANDUSE	IMPERM W	ETNESS WOR	KAB STONES	STONES26 S	FONES621 STOP	VES20 LITH	GRADIENT MICROREL ASPECT	FROST	EXPOSURE FLOODFRE FLOODSEA FLOODDUF DISTURBEL CHEMPROI EROSION	ALCGRA	DEAWC	COMMENTS
			102 101	GS GS	25 25	5	0	0 0 0 0	0	0	1 1				4	
		099	100	GS GS	30 30	5 5	0	0 0	0	0	1 2				4 4	
		098 097		RSH GS	0 25	1	0	0 0 0 0	0	0	1 2				5 4	
		096 095		GS GS	30 0	5 1		0 0 0 0	0	0	3 4				4 4	
		094 093		GS GS	25 30	5 5	0	0 0 0 0	0	0	4 2				4	
		092 091		GS GS	30 0	5 1	0	0 0 0 0	0	0	3 2				4 4	
		090 089		GS GS	30 35	5 4	0	0 0 0 0	0	0	2 2				4 4	
		088	119	GS BOG	35 25	4 5	0	0 0 0 0	0	0	1 5			4	4 15	
			120 121	GS	20 30	5 5	0	0 0	0	0	3 2				4	
			122 123	GS GS	25 35	5	0	0 0	0	0	2 3				4	
			124 125 202	GS GS PAS	35 28 40	5 5 4	0	0 0 0 0 0 0	0 0 0	0 0 0	7 11 1				4 4 4	
			201 200	GS PAS	40 35 0	4 4 1	0	0 0	0	0	1 2				4	
			190 191	PAS	60 60	4	0	0 0	0	0	1 5				4	
			192 177	PAS	0	1	0	0 0	0	0	38 40				4	
			176 175	PAS PAS	50 60	4	0	0 0	0	0	1 2				4 4	
			156 157	PAS PAS	50 0	4	0	0 0 0 0	0	0	14 5				4 4	
			158 141	PAS PAS	50 30	4 5	0	0 0 0 0	0	0	5 10				4	
			140 139	BOG PAS	50 30	4 5	0	0 0 0 0	0	0	9 17				4	
			184 185	PAS PAS	40 35	4 4	0	0 0 0 0	0	0 0	20 8				5 4	
			186 170	PAS PAS	50 35	4	0	0 0	0	0	4				4	
			155 152	GS GS	35 25	4 5 4	0	0 0 0 0 0 0	0 0 0	0 0 0	3 1 2				4 4 4	
			151 150 133	GS GS GS	35 30 45	4 5 4	0	0 0 0 0 0 0	0	0	1 2				4	
			134	GS GS	35	4	0	0 0	0	0	1				4	
			118 117	GS GS	30 40	5	0	0 0 0 0	0	0	2				4	
			116 132	P GS	30 30	4	0	0 0	0	0	1				4	
			149 167	BOG PAS	55 55	5	0	0 0	0	0	6 25				5 5	
			168 169	PAS GS	30 35	5 4	0	0 0 0 0	0	0	10 Y 2				5 4	
		069 068		GS GS	30 0	4 1	0	0 0 0 0	0	0 0	3 1				4 4	
		043 042 041		GS GS GS	30 0 0	4 1 1	0	0 0 0 0 0 0	0 0 0	0 0 0	3			3B 3B 3B		
		041 040 039		GS GS	60 40	4	0	0 0	0	0	1 1 3			3B 3B		
		038 037		GS GS	45	4	0	0 0	0	0	3			3B 3B		
		036 035		GS	0 40	0	0	0 0	0	0	0			38		
		034 033		GS GS	45 0	4 1	0	0 0	0	0	4 9			3B 3B		
		032 059		GS	30 35	5 4	0	0 0 0 0	0	0	0 2				4 4	
		058 000		PPS	85 0	2		0 0 0 0	0	0	3 0				4 0	
		051 056		PP	20 40	5 4	0	0 0	0	0	3 4			3B	4	
		055 054		PP PP	0	3	0	0 0	0	0	3 2				4	
		053 052 057		РР РР РР	15 15 45	5 5 4	0	0 0 0 0 0 0	0 0 0	0 0 0	5 4 3				4	
		050		PP PP PPS	45 20 20	4 5 5	0	0 0	0	0	7				4	
		043 048 047		PPS	20 20	5	0	0 0	0	0	4 5				4	
		046 045		PPS RG	40	4	0	0 0	0	0	5			3B	4	
		044 073		RGF PPS	70 50	4 4	0	0 0	0	0	4 5				4 4	
		074 075		PPS PPS	15 15	5 5	0	0 0 0 0	0	0	1 3				4 4	
		076 077		PP PP	20 20	5 5	0	0 0 0 0	0	0	4 4				4 4	
		078	126	PP RG	20 0	5	0	0 0	0	0	2 0				4	
			143 142 160	RGR RGR RGR	10 10	5 5 5	0	0 0 0 0 0 0	0 0	0 0 0	22 30 25				5 5	
			178 193	RGR	10 0 0	5	0	0 0	0	0	25 9 2				5	
			203 204	RGR	0	5	0	0 0	0	0	2				5	
			195 180	RGR	0	6 3	0	0 0	0	0	0 3				5 4	
			179 162	RGR RGR	0	6 5		0 0 0 0	0	0	0 5				5 5	
			161 144	RGR RGR	0	5 5	0	0 0 0 0	0	0	7 10		5		5	
			127 183	RGR RGR	0	5	0	0 0	0	0	4 10				4	
			182 181	RGR RGR	0	2	0	0 0	0	0	8 0 1				4	
			196 163	RGR RGR	0	2	0	0 0	0 0	0	1 8 11				4	
			164 165 166	RGR RGR RGR	0 0 0	5 2 5	0	0 0 0 0 0 0	0	0 0 0	11 13 36				5 4 5	
			148 147	RGR RGR	10 10	5	0	0 0	0	0	36 5 13				4	
			146 145	RGR	60 65	4	0	0 0 0 0	0	0	18 22				5	
			128 129	RGR RGR	10 20	5 5	0	0 0 0 0	0	0	2				4 4	
			130 131	LEY	20 60	5	0	0 0 0 0	0	0	3 0				4 4	
		072 071		PP PP	35 25	4	0	0 0	0	0	3 4				4 4	
		018 017 016		PP PP	35 45	4 4 4	0	0 0	0 0	0	3			38 38 28		
		016		LEY	40	4	U	0 0	U	0	0			3B		

015 014	PP PP	0 20	4	0	0	0	0	0	3 4		B4 4
013	PP	20	5	0	0	0	0	0	5		4B
012 011	PP PP	45 35	4	0	0	0	0	0	4 3		3B 3B
010	PP	15	5	0	0	0	0	0	3		4
031 058	RGR PPS	15 85	5 2	0	0	0	0	0	3		4
030 029	Р	0 30	0 4	0	0	0	0	0	0		3B 3B
009	Р	30	4	0	0	0	0	0	1		3B
008 007	P	50 0	4 2	0	0	0	0	0	1 2		3B 3A
006	P	40	4	0	0	0	0	0	6		38
005 004	P	30 30	0 4	0	0	0	0	0	3 1		3B 3B
019 020	P	50 30	4 4	0	0	0	0	0	2 2		3B 3B
021		0	0	0	0	0	0	0	0		3B
022 023	P	35 55	3 4	0	0	0	0	0	2 2		3B 3B
025 025	Р	0	3 0	0	0	0	0	0	2		3B 3B
026		0	0	0	0	0	0	0	0		3B
027 028	P	30 50	4 4	0	0	0	0	0	1		3B 3B
001	Р	30	4	0	0	0	0	0	7		3B
002 003	P	50 50	4 4	0	0	0	0	0	4		3B 3B
197 187	P	30 0	5 5	0	0	0	0	0	2 3		4
172	Р	45	4	0	0	0	0	0	1		4
154 136	P	50 0	4	0	0	0	0	0	10 18		4
137	P	45	4	0	0	0	0	0	20		5
155 173	P	0 60	4 4	0	0	0	0	0	4 2		4
188 198	P	50 0	4 0	0	0	0	0	0	2 2		4
199	Р	50	4	0	0	0	0	0	2		4
189 174	P	80 0	4 4	0	0	0	0	0	2 4		4
156 138	P	45 0	4	0	0	0	0	0	9 2		4
105	Р	30	4	0	0	0	0	0	1		4
104 103	P	35 25	4	0	0	0	0	0	2 2		4
106	Р	30	4	0	0	0	0	0	2		4
107 108	P	20 20	4 5	0	0	0	0	0	2 2		4
109 110	P	20 30	5 4	0	0	0	0	0	2		4
111	Р	25	5	0	0	0	0	0	2		4
112 113	P	25 25	5 5	0	0	0	0	0	1 4		4
114	P	30	4	0	0	0	0	0	3		4
115 087	P	35 35	4	0	0	0	0	0	3 3		4
086 085	P	35 35	4 4	0	0	0	0	0	2 3		4
084	P	40	4	0	0	0	0	0	1		4
053 070	Р	0 30	0 5	0	0	0	0	0	1		4
082	Р	60	4	0	0	0	0	0	1		4
081 080	P	35 35	4 4	0	0	0	0	0	1		4
079 067	P	55 80	4 4	0	0	0	0	0	1		4
066	P	40	4	0	0	0	0	0	2		4
065 064	P	50 80	4 0	0	0	0	0	0	0 2		4
063 062	P	50 55	4	0	0	0	0	0	2		4
061	Р	40	4	0	0	0	0	0	2		4
060 102	P GS	50 25	4 5	0	0	0	0	0	2 1		4
101	GS	25	5	0	0	0	0	0	1		4
100 099	GS GS	30 30	5 5	0	0	0	0	0	1 2		4
098 097	RSH GS	0 25	1 5	0	0	0	0	0	1 2		5
096	GS	30	5	0	0	0	0	0	3		4
095 094	GS GS	0 25	1 5	0	0	0	0	0	4		4
093 092	GS GS	30 30	5 5	0	0	0	0	0	2 3		4
091	GS	0	1	0	0	0	0	0	2		4
090 089	GS GS	30 35	5	0	0	0	0	0	2 2		4
088 119	GS BOG	35 25	4 5	0	0	0	0	0	1 5		4 45
120		20	5	0	0	0	0	0	3		45
121 122	GS GS	30 25	5 5	0	0	0	0	0	2 2		4
123 124	GS GS	35 35	4	0	0	0	0	0	3 7		4
125	GS	28	5	0	0	0	0	0	11		4
202 201	PAS GS	40 35	4 4	0	0	0	0	0	1		4
200	PAS	0	1	0	0	0	0	0	2		4
190 191	PAS	60 60	4 4	0	0	0	0	0	1 5		4
192 177	PAS	0	1	0	0	0	0	0	38 40		4
176	PAS	50	4	0	0	0	0	0	1		4
175 156	PAS	60 50	4 4	0	0	0	0	0	2 14		4
157	PAS	0	1	0	0	0	0	0	5		4
158 141	PAS	50 30	4 5	0	0	0	0	0	5 10		4
140 139	BOG PAS	50 30	4 5	0	0	0	0	0	9 17		4
184	PAS	40	4	0	0	0	0	0	20		5
185 186	PAS	35 50	4 4	0	0	0	0	0	8 4		4
170	PAS	35	4	0	0	0	0	0	2		4
155 152	GS GS	35 25	4 5	0	0	0	0	0	3		4
151 150	GS GS	35 30	4 5	0	0	0	0	0	2 1		4
133	GS	45	4	0	0	0	0	0	2		4
134 135	GS GS	35 35	4 4	0	0	0	0	0	1 2		4
118 117	GS GS	30 40	5 4	0	0	0	0	0	2		4
116	Р	30	4	0	0	0	0	0	1		4
132 149	GS BOG	30 55	5	0	0	0	0	0	1 6		4 5
167 168	PAS	55 30	4 5	0	0	0	0	0	25 10 Y		5
100		50	2	č	č	č					,

	169	GS	35	4	0	0	0	0	0	2				4
069 068 043		GS GS	30 0 30	4 1 4	0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 1 3			3B	4 4
042 041		GS GS	0	1 1	0	0	0	0	0	1			3B 3B	
040		GS GS	60 40	4	0	0	0	0	0	1			3B 3B	
038 037 036		GS GS	45 35 0	4 4 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 1 0			3B 3B	
035		GS GS	40 45	4	0	0	0	0	0	3			3B 3B	
033 032		GS	0 30	1 5	0	0	0 0	0	0 0	9 0			3B	4
059 058		GS PPS	35 85	4 2	0	0	0	0	0	2 3				4
000 051 056		РР	0 20 40	5 4	0	0 0 0	0 0 0	0 0 0	0 0 0	0 3 4			3B	0 4
055 054		PP PP	0 15	3 5	0	0	0	0	0	3 2			3B	4
053 052		PP PP	15 15	5 5	0	0 0	0 0	0	0 0	5 4				4 4
057 050 049		PP PP PPS	45 20 20	4 5 5	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	3 7 4			3B	4
048 047		PPS	20 20	5	0	0	0	0	0	4				4
046 045		PPS RG	40 65	4	0	0	0	0	0	5 7			3B	4
044 073 074		RGF PPS PPS	70 50 15	4 4 5	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4 5 1				4 4 4
075		PPS	15 20	5	0	0	0	0	0	3				4
077 078		PP PP	20 20	5 5	0	0 0	0 0	0	0 0	4 2				4 4
	126 143 142	RG RGR RGR	0 10 10	3 5 5	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 22 30				4 5 5
	160 178	RGR	10 10 0	5	0	0	0	0	0	25 9				5
	193 203	RGR RGR	0	5 5	0	0 0	0 0	0	0 0	2 2				5 5
	204 195 180	RGR RGR RGR	0 0 0	3 6 3	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 3				4 5 4
	179 162	RGR	0	6	0	0	0	0	0	0				5 5
	161 144	RGR RGR	0 0	5 5	0	0 0	0 0	0	0 0	7 10		5		5
	127 183	RGR RGR	0	5	0	0	0	0	0	4 10				4
	182 181 196	RGR RGR RGR	0 0 0	2 2 2	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	8 0 1				4 4 4
	163 164	RGR RGR	0	2 5	0	0	0 0	0	0 0	8 11				4 5
	165 166	RGR RGR	0	2	0	0	0	0	0	13 36				4
	148 147 146	RGR RGR RGR	10 10 60	5 5 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	5 13 18				4 45 5
	145 128	RGR	65 10	4	0	0	0	0	0	22				5
	129 130	RGR	20 20	5	0	0	0	0	0	1 3				4
072 071	131	LEY PP PP	60 35 25	4 4 5	0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 3 4				4 4 4
018		PP PP	35	4	0	0	0	0	0	3			3B 3B	
016 015		LEY PP	40 0	4	0	0	0	0	0	0 3			3B B4	
014 013 012		РР РР РР	20 20 45	5 5 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	4 5 4			4B 3B	4
011 010		PP	35 15	4	0	0	0	0	0	3 3			3B 3B	4
031 058		RGR PPS	15 85	5 2	0	0 0	0 0	0	0 0	2 3				4 4
030 029 009		P P	0 30 30	0 4 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 1 1			3B 3B 3B	
008		P P	50 50	4	0	0	0	0	0	1			3B 3A	
006 005		P P	40 30	4 0	0 0	0 0	0 0	0	0 0	6 3			3B 3B	
004 019 020		P P P	30 50 30	4 4 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 2 2			3B 3B 3B	
020 021 022		P	0 35	0 3	0	0	0	0	0	0			3B 3B	
023 025		P P	55 0	4 3	0	0 0	0 0	0	0 0	2 2			3B 3B	
025 026 027		Р	0 0 30	0 0 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1			3B 3B 3B	
028		P P	50 30	4	0	0	0	0	0	1 7			3B 3B	
002 003		P P	50 50	4 4	0	0	0	0	0 0	4 3			3B 3B	
	197 187 172	P P P	30 0 45	5 5 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 3 1				4 4 4
	154 136	P P	50 0	4	0	0	0	0	0	10 18				4
	137 155	P P	45 0	4 4	0 0	0 0	0 0	0	0 0	20 4				5 5 4
	173 188	P	60 50	4	0	0	0	0	0	2 2 2				4
	198 199 189	P P P	0 50 80	0 4 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 2 2				4 4 4
	174 156	P P	0 45	4 4	0	0	0	0	0 0	4 9				4
	138 105	P P	0 30 35	4	0	0	0	0	0	2				5 4
	104 103 106	P P P	35 25 30	4 4 4	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 2 2				4 4 4
	107 108	P P	20 20	4 5	0	0 0	0	0	0 0	2 2				4 4
	109 110	P P	20 30	5 4	0	0	0	0	0 0	2 2				4 4
	111 112 113	P P P	25 25 25	5 5	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	2 1 4				4 4 4
	113	P	30	4	0	0	0	0	0	3				4

115	Р	35	4	0	0	0	0	0	3
087	Р	35	4	0	0	0	0	0	3
086	Р	35	4	0	0	0	0	0	2
085	Р	35	4	0	0	0	0	0	3
084	Р	40	4	0	0	0	0	0	1
053		0	0	0	0	0	0	0	1
070	Р	30	5	0	0	0	0	0	1
082	Р	60	4	0	0	0	0	0	1
081	Р	35	4	0	0	0	0	0	1
080	Р	35	4	0	0	0	0	0	1
079	Р	55	4	0	ò	0	ò	Ó	1
067	Р	80	4	0	ò	0	ò	0	1
066	Р	40	4	0	ò	0	0	0	2
065	P	50	4	0	0	0	0	0	0
064	P	80	0	0	0	0	0	0	2
063	P	50	4	ő	ő	ő	ő	0	2
062	P	55	4	ō	ő	ő	ő	0	2
061	P	40	4	0	0	0	0	0	2
060	P	50	4	0	ő	0	ő	0	2
000	· ·	50	4	0	0	0	0	0	2

JOBNO	SOILPIT	BORING	HORIZON	TEXTURE	TOPDEPTH	BTMDEPTH	COLOUR	MOTCOL	MOTABUN	MOTCONT
		10	2	1 mcl	0	25	10YR42	0	F	D
		10	2 2	2 hcl	25	100	10YR53	OG	Μ	D
		10	1 :	1 mcl	0	15	10YR42	0	F	D
		10	1 :	2 mcl	15	30	10YR52	0	F	D
		10	1 :	3 hcl	30	100	10YR53	OG	Μ	D
		10)	1 mcl	0		10YR42	0	F	D
		10) :	2 mcl	20	30	10YR52	0	F	D
		10) :	3 hcl	30		10YR53	OG	Μ	D
		099		1 mcl	0		10YR42	0	G	F
		099		2 mcl	15		10YR52	0	F	D
		099		3 hcl	30		10YR53	OG	Μ	D
		098		1 msl	0		10YR43			
		098		2 rock	35		SAN.ST			
		097		1 mcl	0		10YR42	0	F	D
		097		2 mcl	10		10YR52	0	F	D
		097		3 hcl	25		10YR53	OG	М	D
		096		1 mcl	0		10YR42	0	F	F
		096		2 mcl	10		10YR52	0	F	D
		096		3 hcl	30		10YR53	OG	M	D
		095		1 mcl	0		10YR42	0	F	D
		095		2 msl	10		10YR52	0	С	D
		095		3 scl	30		10YR52	OG	C	D
		094		1 mcl	0		10YR42	0	F	D
		094		2 mcl	15		10YR52	0	F	F
		094		3 hcl	25		10YR53	OG	M	D
		093		1 mcl	0		10YR42	0	F	D
		093		2 hcl	25		10YR53	OG	М	D
		092		1 mcl	0		10YR42	0	-	0
		092		2 mcl	20		10YR53	0	F	D
		092		3 hcl	30		10YR53	OG	М	D
		092		4 no	80		NO	0	-	-
		091		1 mcl	0		10YR42	0	F	F
		091		2 mcl	15		10YR43	OG OC	M	D
		091 090		3 scl 1 mcl	55 0		10YR53 10YR42	OG O	M F	D
		090		2 mcl	20		107R42 10YR52	0	F	D D
		090		3 hcl	30		107R52	OG	M	D
		090		1 mcl	0		101R55 10YR42	0	F	D
		089		2 mcl	15		10YR52	0	C	D
		089		3 hcl	35		10YR53	OG	C	M
		088		1 mcl	0		10YR42	0	F	D
		088		2 mcl	10		10YR52	0	F	D
		088		3 hcl	30		10YR53	OG	M	D
		119		1 pt	0		10YR41			-
		11		2 mcl	10		10YR52	0	F	D
		11		3 hcl	25		10YR53	OG	M	D
		120		1 mcl	0		10YR42	0	F	D
		120		2 hcl	20		10YR53	OG	M	D
		120		3 no	100					
		12		1 mcl	0		10YR42	0	F	D
		12		2 mcl	10		10YR52	0	F	D
					_•					

121	3 hcl	30	100 10YR53			
122	1 mcl	0	8 10YR42	0	F	F
122	2 mcl	8	30 10YR52	0	F	D
122	3 hcl	30	100 10YR53	OG	Μ	D
123	1 mcl	0	30 10YR42	0	F	D
123	2 hcl	30	100 10YR53	OG	Μ	D
124	1 mcl	0	30 10YR52	0	F	D
124	2 hcl	30	100 10YR53	OG	Μ	D
125	1 mcl	0	20 10YR52	0	F	D
125	2 hcl	20	55 10YR53	ZG	Μ	D
202	1 pt	0	40 10YR21			
202	2 m.hcl	40	100 75YR54	0	С	D
201	1 pt	0	35 10YR21			
201	2 zc	35	100 75YR54	G	F	F
200	1 pt	0	30 10YR21			
190	1 pt	0	40 10YR21			
190	2 msl	40	60 10YR53	G	F	F
190	3 zc	60	100 75YR54	G	С	D
191	1 pt	0	25 10YR21			
191	2 mcl	25	50 10YR53	OG	F	F
191	3 h.mcl	50	100 10YR53	OG	С	D
192	1 msl	0	30 10YR53	0	F	F
192	2 msl	30	45 10YR51	0	F	D
177	1 mcl	0	20 10YR54			
177	2 mcl	20	60 10YR53			
176	1 pt	0	30 10YR21			
176	2 mzcl	30	40 10YR54	G	С	D
176	3 hcl	40	100 10YR54		С	D
176	4 no	100	0 NO			
175	1 pt	0	15 10YR42			
175	2 mscl	15	40 5YR32			
175	3 msl	40	80 75YR54			
141	1 mcl	0	25 10YR52	0	F	D
141	2 hcl	25	100 10YR53	G	М	Р
140	1 pt	0	40 10YR21			
140	2 mcl	40	50 10YR52	OG	М	D
140	3 zc	50	100 10YR53	G	М	Р
139	1 mcl	0	35 10YR52	OG	М	Р
139	2 hcl	35	100 10YR53	OG	М	Р
184	1 mcl	0	35 10YR42	0	F	F
184	2 m.hcl	35	100 10YR52	OG	М	D
184						
		100	0 NO			
185	3 no	100 0	0 NO 20 10YR42			
185 185	3 no 1 mcl	0	20 10YR42	OG	С	F
185	3 no 1 mcl 2 mcl	0 20	20 10YR42 35 10YR52	OG OG		F
185 185	3 no 1 mcl 2 mcl 3 hcl	0 20 35	20 10YR42 35 10YR52 100 10YR53	OG OG	C M	F D
185 185 186	3 no 1 mcl 2 mcl 3 hcl 1 mcl	0 20 35 0	20 10YR42 35 10YR52 100 10YR53 20 10YR42			
185 185 186 186	3 no 1 mcl 2 mcl 3 hcl 1 mcl 2 mcl	0 20 35 0 20	20 10YR42 35 10YR52 100 10YR53 20 10YR42 35 10YR43	OG	М	
185 185 186 186 186	3 no 1 mcl 2 mcl 3 hcl 1 mcl 2 mcl 3 msl	0 20 35 0 20 35	20 10YR42 35 10YR52 100 10YR53 20 10YR42 35 10YR43 100 10YR52			D
185 185 186 186 186 186	3 no 1 mcl 2 mcl 3 hcl 1 mcl 2 mcl 3 msl 4 no	0 20 35 0 20 35 100	20 10YR42 35 10YR52 100 10YR53 20 10YR42 35 10YR43 100 10YR52 0 NO	OG	М	D
185 185 186 186 186 186 170	3 no 1 mcl 2 mcl 3 hcl 1 mcl 2 mcl 3 msl 4 no 1 mcl	0 20 35 0 20 35 100 0	20 10YR42 35 10YR52 100 10YR53 20 10YR42 35 10YR43 100 10YR52 0 NO 30 10YR42	OG OG	М	D
185 185 186 186 186 186	3 no 1 mcl 2 mcl 3 hcl 1 mcl 2 mcl 3 msl 4 no	0 20 35 0 20 35 100	20 10YR42 35 10YR52 100 10YR53 20 10YR42 35 10YR43 100 10YR52 0 NO	OG	М	D

	152	2 hcl	20	50 10YR53	GO	С	D
	151	1 mcl	0	20 10YR42	0	F	F
	151	2 hcl	20	100 10YR53	OG	Μ	D
	150	1 mcl	0	30 10YR42	0	F	F
	150	2 hcl	30	100 10YR52	OG	С	D
	133	1 pty.cl	0	30 10YR42			
	133	2 msl	30	45 10YR52			D
	133	3 hcl	45	100 10YR53	OG	С	D
	134	1 mcl	0	30 10YR42	0	F	F
	134	2 mcl	30	45 10YR52	0	С	D
	134	3 hcl	45	100 10YR53	OG	Μ	D
	135	1 mcl	0	20 10YR42	0	F	F
	135	2 hcl	20	40 10YR52	OG	Μ	D
	135	3 hcl.c	40	100 10YR53	OG	Μ	D
	118	1 mcl	0	20 10YR42	0	F	F
	118	2 mcl	20	45 10YR52	0	С	D
	118	3 scl	45	55 10YR53	OG	Μ	D
	118	4 hcl	55	100 10YR53	OG	С	D
	117	1 mcl	0	25 10YR42	0	F	F
	117	2 mcl	25	40 10YR52	OG	С	D
	117	3 hcl	40	100 10YR53	OG	М	D
	116	1 mcl	0	20 75YR20			
	116	2 hcl	20	60 10YR43	0	С	D
	116	3 mcl	60	100 10YR54	0	С	D
	132	1 mcl	0	20 10YR41	0	F	F
	132	2 hcl	20	100 10YR53	OC	Μ	D
	149	1 pt	0	55 75YR21			
	149	2 mcl	55	100 10YR52			D
	167	1 mcl	0	10 10YR42			
	167	2 mcl	10	60 75YR64			
	167	3 mscl	60	100 10YR64			
	168	1 mcl	0	10 10YR42			
	168	2 m.hcl	10	40 10YR53	0	F	D
	168	3 hcl	40	100 10YR53	OG	Μ	D
	169	1 mcl	0	20 10YR42	0	F	F
	169	2 mcl	20	45 10YR53	0	С	D
	169	3 hcl	45	100 10YR53	OG	М	D
069		1 mcl	0	20 10YR52	0	F	D
069		2 hcl	20	75 10YR53	OG	Μ	D
069		3 mcl	75	100 10YR54	0	С	D
068		1 mscl	0	25 10YR43	-	-	
068		2 msl	25	45 10YR56			
068		3 s.stone	45	0 YELLOW			
043		1 mcl	0	25 10YR53	0	F	D
043		2 c	25	75 10YR43	OG	M	D
043		3 hcl	75	100 10YR53	OG	M	D
042		1 mcl	0	20 10YR54	0	F	D
042		2 scl	20	45 10YR56	-		-
041		1 mcl	0	25 10YR42	0	F	D
041		2 mcl	25	65 10YR52	0	M	P
041		3 mscl	65	75 75YR21	0	F	D
040		1 mcl	0	35 10YR43	0	F	D
040		1 11101	U	33 TOLL+2	0	1	0

040	2 mcl	35	60 10YR52	0	М	D
040	3 mcl	60	100 10YR53	0	С	D
039	1 mcl	0	30 10YR52	0	Μ	D
039	2 mscl	30	50 10YR62	0	Μ	D
039	3 hcl	50	100 10YR53	OG	М	Ρ
038	1 mcl	0	30 10YR42	OG	С	D
038	2 mcl	30	48 10YR61	0	М	D
038	3 m.hcl	48	80 10YR52	0	М	D
037	1 mcl	0	20 10YR33	0	Μ	D
037	2 hcl	20	45 10YR62	0	М	D
037	3 mcl	45	100 10YR53	0	С	D
036	1 non.ag	0	0 TREE			
035	1 mcl	0	20 10YR42	0	F	F
035	2 mcl	20	45 10YR52	0	Μ	D
035	3 h.mcl	45	100 10YR53	OG	М	Ρ
034	1 pty.loam	0	20 75YR21			
034	2 fscl	20	40 10YR52	OG	С	D
034	3 hcl	40	100 10YR61	0	Μ	D
033	1 mcl	0	30 10YR42			
033	2 mscl	30	65 10YR58			
032	1 mcl	0	25 10YR51	0	С	D
032	2 mcl	25	40 10YR52	OG	С	D
032	3 hcl	40	100 10YR53			
059	1 pt	0	20 75YR21			
059	2 mcl	20	35 10YR52	0	F	D
059	3 hcl	35	100 10YR63	OG	F	F

Appendix D ALC Soil Profile Logs for North Area, July 2024

Project Number	Project Name	Parcel
C1115	Dear Moor Solar Farm	North Area

Date of Survey	Survey Type	Surveyor(s)	Company
27/07/2024	Detailed ALC	RWA	Askew Land and Soil

Weather	Relief	Land use and vegetation
Cool, cloudy, showers.	Gently undulated.	RGR (Rough Grazing)

Grid Reference	Postcode	Altitude	Area
NY044242		117	50

MAFF prov	MAFF detailed	Flooding
Grade 4	None	Flood Zone 1 - Low Risk

AAR	AT0	MDw	MDp	FCD	Climate grade
1390	1273	51		294	3b

Bedrock	Superficial deposits
Pennine Middle Coal Measures	Till, Devensian

Soil association(s) 1:250,000	Detailed soil information
Brickfield 3 (713g)	None

Revision Number	Date Revised
2	17/10/2024

	Grid re	f.					[epth (cm)	Matrix	Ochreous Mottles	Grey Mottles			Stones - ty	e 1 Stones - ty	be 2	Ped			Drought	Wet	Final ALC	
	NGR X NY 03800 24800 30	Y	Alt (m)	Slope ° ≤7	Aspect	E Land us	е Тор	Bttm Ti		our Form Munsell colour			Texture HCL - Cla	% > 2cm > 6cr	Type % > 2cm > 6c HR - All hard rocks or stone	п Туре	Strength Size Sha		No. 82	IBW MBp Go	WC IV 4	Limitation 1 Limitation 2 Limitation 3 Wetness	Grade
		5550 52400		_,	Lever		27	45 14	10YR5/3 5 2.5Y6/2	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes	C - Clay C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No				~
	NY 03900 24800 30	3900 524800	0 92	≤7	Level	PGR		46 20	0 10YR4/1 5 2.5YR5/3 4 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	1 82 1	WCIV 4	Wetness	4
	NY 04000 24800 30	4000 524800	0 92	≤7	Level	PGR	22	41 19	2 10YR4/1 9 2.5YR5/3 9 2.5Y6/4	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla HCL - Cla C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No) 81 1	WCIV 4	Wetness	4
	NY 04100 24800 30	4100 524800	0 97	≤7	Level	PGR	25	45 20	5 10YR4/2 0 10YR6/3 5 2.5Y6/2	CD - Ci7.5YR5/8 MD - №7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Cla C - Clay C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	2 82 1	WCIV 4	Wetness	4
	NY 03800 24700 30	13800 524700	0 85	≤7	Level	PGR		50 25	5 10YR4/1 5 2.5YR5/3 0 2.5Y6/4	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay		HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	3 84 1	WCIV 4	Wetness	4
	NY 03900 24700 30	13900 524700	0 90	≤7	Level	PGR	28	45 1	8 10YR4/2 7 10YR5/3 5 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Cla C - Clay C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	2 83 1	WCIV 4	Wetness	4
	NY 04000 24700 30	4000 524700	0 90	≤7	Level	PGR	22	46 24	2 10YR4/2 4 10YR5/3 4 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla HCL - Cla C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	1 82 1	WCIV 4	Wetness	4
	NY 04100 24700 30	4100 524700	0 96	≤7	Level	PGR	23	47 24	3 10YR4/1 4 2.5YR5/3 3 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	2	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	0 81 1	WCIV 4	Wetness	4
	NY 03800 24600 30	3800 524600	0 85	≤7	Level	PGR		30 30 50 20 120 70	2.5YR5/3	CD - C17.5YR5/6 MD - 117.5YR6/8	CD - C(2.5Y6/2 MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	3 84 1	WCIV 4	Wetness	4
	NY 03900 24600 30	3900 524600	0 90	≤7	Level	PGR	28	48 20	8 10YR4/2 0 10YR5/3 2 2.5Y6/2	MD - 1 10YR5/8 MD - 17.5YR6/8	MD - N2.5Y6/2 MD - N2.5Y6/1	Yes	HCL - Cla HCL - Cla C - Clay	0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo		3 84 1	WCIV 4	Wetness	4
	NY 04000 24600 30	4000 524600	0 90	≤7	Level	PGR		45 1	0 10YR4/2 5 10YR5/3 5 2.5Y6/4	MD - №7.5YR5/8 MD - №7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Cla C - Clay C - Clay	1	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	1 82 1	WC IV 4	Wetness	4
-	NY 04100 24600 30	14100 524600	0 96	≤7	Level	PGR		50 24	5 10YR4/1 4 2.5YR5/3 0 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	0 0 0	HR - All hard rocks or stone HR - All hard rocks or stone HR - All hard rocks or stone	(i.e. those	which cannot be scratche	d wi Moderate NON - NNo	No	3 84 1	WCIV 4	Wetness	4

	Crider	4	1		1	1			1 14-	A.I.	Ochreous Mottles	Constitution	1 1		64-			Change time 2	1	Ded			-1-1-	Desusht	14/-+	Circl ALC	
NGR	Grid re X	r. Y	Alt (m)	Slope °	Aspect	Land use) Ma hick Mu		Form Munsell colour	Grey Mottles Form Munsell colour	Gley 1	Texture 9	6 > 2cm	ones - type > 6cm	Туре	Stones - type 2 % > 2cm > 6cm Type	Stren	Ped gth Size Sh	SUBS S	TR CaCO3 Mn	C SPL M	Drought Bw MBp Go	Wet I WC Gw	Final ALC Limitation 1 Limitation 2 Limitation 3	3 Grade
NYC	04200 24600 30	4200 524600	0 101	≤7	Level	PGR	26	47 2	6 10Y 1 10Y 3 2.5	(R6/3	CD - Ci 10YR5/8 MD - 1 7.5YR6/8	CD - C(2.5Y6/2	Yes 0	HCL - Cla [,] 2 C - Clay C C - Clay C	0	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	. 82 1	WCIV 4	Wetness	4
NYC	03900 24500 30	3900 52450	90	≤7	Level	PGR	30	48 1	0 10Y 8 10Y 2 2.5	(R5/3	CD - Ci 10YR5/8 MD - ≬7.5YR6/8	CD - C(2.5Y6/2 MD - N2.5Y6/1	Yes H	HCL - Cla' 1 HCL - Cla' 1 C - Clay C		0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	84 1	WCIV 4	Wetness	4
NYC	04000 24500 30	4000 524500	90	≤7	Level	PGR	28	45 1	8 10Y 7 10Y 5 2.5	(R5/3	CD - Ci 7.5YR5/8 MD - ↑7.5YR6/8		Yes 0	HCL - Clar 1 C - Clay C C - Clay C	0	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	83 1	WC IV 4	Wetness	4
NYC	04100 24500 30	4100 52450	96	≤7	Level	PGR	27	46 1	7 10Y 9 10Y 4 2.5	(R5/3	MD - ↑7.5YR5/8 MD - ↑7.5YR6/8	CD - C(2.5Y6/2	Yes 0	HCL - Clai 2 C - Clay C C - Clay C	0	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	. 82 1	WC IV 4	Wetness	4
' NY C	04200 24500 30	4200 52450	0 101	≤7	Level	PGR	30	50 2	0 10Y 0 10Y 0 2.5	(R5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes 0	HCL - Clai 1 C - Clay C C - Clay C		0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	84 1	WCIV 4	Wetness	4
NYC	03900 24400 30	3900 524400	90	≤7	Level	PGR	32	45 1	2 10Y 3 10Y 5 2.5	(R5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - 1 2.5Y6/1	Yes 0	HCL - ClarC C - Clay C C - Clay C)	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those)	which c	annot be scratch	ed wi Modera	ate NON - NNo	No	84 1	WC IV 4	Wetness	4
NYC	04000 24400 30	4000 524400	90	≤7	Level	PGR	30	45 1	0 10Y 5 10Y 5 2.5	(R5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes 0	HCL - Cla ⁺ 1 C - Clay C C - Clay C	. 0	0	HR - All	nard rocks or stones (i.e. those nard rocks or stones (i.e. those nard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	83 1	WC IV 4	Wetness	4
NYC	04100 24400 30	4100 524400	95	≤7	Level	PGR	28	49 2	8 10Y 1 10Y 1 2.5	(R5/3	CD - Ci 7.5YR5/8 MD - ↑7.5YR6/8	CD - C(2.5Y6/2	Yes 0	HCL - Clai C C - Clay C C - Clay C	0	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	84 1	WCIV 4	Wetness	4
. NY C	04200 24400 30	4200 524400	0 103	≤7	Level	PGR	30	55 2	0 10Y 5 10Y 5 2.5	(R5/3	MD - ↑7.5YR5/8 MD - ↑7.5YR6/8	MD - N2.5Y6/1	Yes H	HCL - ClarC HCL - ClarC C - Clay C)	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	i 86 1	WC IV 4	Wetness	4
NYC	04280 24400 30	4280 52440) 103	≤7	Level	PGR	28	53 2	8 10Y 5 2.5 7 2.5	Y5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes 0	HCL - Cla C C - Clay C C - Clay C)	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera		No	86 1	WCIV 4	Wetness	4
NYC	03600 24300 30	3600 524300	92	≤7	Level	PGR	30	45 1	0 10Y 5 10Y 5 2.5	(R5/2	MD - №7.5YR5/8 MD - №7.5YR6/8	CD - C(2.5Y6/2	Yes 0	HCL - Clai C C - Clay C C - Clay C		0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those	which c	annot be scratch	ed wi Modera	ate NON - NNo	No	84 1	WC IV 4	Wetness	4
NYC	03700 24300 30	3700 52430	93	≤7	Level	PGR	26	48 2	6 10Y 2 10Y 2 2.5	(R6/3	CD - Ci 7.5YR5/8 MD - N 7.5YR6/8	CD - C(2.5Y6/2	Yes 0	HCL - Cla [.] 4 C - Clay C C - Clay C)	0	HR - All	hard rocks or stones (i.e. those hard rocks or stones (i.e. those hard rocks or stones (i.e. those)	which c	annot be scratch	ed wi Modera	ate NON - NNo	No	. 82 1	WCIV 4	Wetness	4

oint	Grid ref.	AI	t (m) Slope	° Aspe	t Land			m) Ma		Ochreous Mottles	Grey Mottles Form Munsell colour	Gley	Texture	St	ones - typ	e 1	St	nes - type 2		Pec	d	SUBS STR	CaCO3	MnCS		Drought	Wet		Final ALC	
NGR	x	Y	[.	Ι.	I	Top	Bttm	Thick Mu	insell coloui	Form Munsell colour	Form Munsell colour		9	6 > 2cn	n > 6cm	Туре	% > 2cn	> 6cm Ty	be Stri	ength Siz	ze Shape				мв	w MBp Go	I WC Gw	Limitation 1	Limitation 2 Limitat	on 3 Grade
NY 0380	24300 30380	0 524300 91	≤7	Level	PGR		41	22 10 19 2.5 79 2.5	YR5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla ^r (HCL - Clar(C - Clay)	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	81 1	WCIV 4	Wetness		4
NY 0390	24300 30390	0 524300 90	≤7	Level	PGR		50	30 10 ⁰ 20 2.5 70 2.5		CD - Ci 7.5YR5/6 MD - ↑7.5YR6/8	CD - C(2.5Y6/2 MD - N2.5Y6/1	Yes	HCL - Clai 2 C - Clay C C - Clay C)	0	HR - All	hard rocks	r stones (i.e. ti r stones (i.e. ti r stones (i.e. ti	ose which	h cannot be	scratched w	i Moderate	e NON - I	NNO M NNO M NNO Y	No	84 1	WCIV 4	Wetness		4
NY 0400	24300 30400	0 524300 90	≤7	Level	PGR		48	28 10 20 10 72 2.5	(R5/3	MD - № 10YR5/8 MD - № 7.5YR6/8	MD - N2.5Y6/2 MD - N2.5Y6/1	Yes	HCL - Clai (HCL - Clai (C - Clay ()	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	84 1	WCIV 4	Wetness		4
NY 0410	24300 30410	0 524300 95	≤7	Level	PGR		45	28 10 17 10 75 2.5	(R5/3	MD - ↑7.5YR5/8 MD - ↑7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Cla' 1 C - Clay (C - Clay ()	0	HR - All	hard rocks	r stones (i.e. ti r stones (i.e. ti r stones (i.e. ti	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	83 1	WCIV 4	Wetness		4
NY 0420	24300 30420	0 524300 10	3 ≤7	Level	PGR		45	30 10 15 10 75 2.5	(R5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Clay 1 C - Clay C C - Clay C)	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	83 1	WCIV 4	Wetness		4
NY 0360	24200 30360	0 524200 10	4 ≤7	Level	PGR		49	28 10 21 10 71 2.5	(R5/3	CD - Ci 7.5YR5/8 MD - 1 7.5YR6/8	CD - C(2.5Y6/2	Yes	MCL - Cla (HCL - Cla (C - Clay ()	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	84 1	WC IV 3b	Wetness		3b
NY 0370	24200 30370	0 524200 10	7 ≤7	Level	PGR		46	27 10 19 10 74 2.5	(R5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	CD - C(2.5Y6/2	Yes	MCL - Cla 2 HCL - Cla C C - Clay C)	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	82 1	WC IV 3b	Wetness		3b
NY 0380	24200 30380	0 524200 10	7 ≤7	Level	PGR		50	30 10 20 10 70 2.5		MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Clai 1 C - Clay C C - Clay C)	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	84 1	WCIV 4	Wetness		4
NY 0390	24200 30390	0 524200 10	2 ≤7	Level	PGR		45	25 10 20 10 75 2.5	(R6/3	CD - Ci 7.5YR5/8 MD - ↑7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Clai (C - Clay (C - Clay ()	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I	NNO M NNO M NNO Y	No	82 1	WCIV 4	Wetness		4
NY 0400	24200 30400	0 524200 10	2 ≤7	Level	PGR	25	50	25 10 25 2.5 70 2.5	YR5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Clay C - Clay C - Clay C - Clay)	0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	84 1	WCIV 4	Wetness		4
NY 0410	24200 30410	0 524200 10	2 ≤7	Level	PGR	23	47	23 10 24 2.5 73 2.5	YR5/3	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Clai 2 C - Clay 2 C - Clay 0		0	HR - All	hard rocks	r stones (i.e. tl r stones (i.e. tl r stones (i.e. tl	ose which	h cannot be	scratched w	i Moderate	e NON - I		No	81 1	WCIV 4	Wetness		4
NY 0365	24100 30365	0 524100 10	7 ≤7	Level	PGR	0		32 10 13 10		MD - 1 7.5YR5/8	MD - N2.5Y6/1		MCL - ClaC C - Clay (0			r stones (i.e. tl r stones (i.e. tl								84 1	WCIV 3b	Wetness		3b

						1	_	D				a 11 m	-	1								1 1	<u> </u>		Final ALC	
int	NGR X	Y	Alt (m)	Slope ^c	Aspect	Land us	тор			Matrix Munsell colour	Ochreous Mottles Form Munsell colour	Grey Mottles Form Munsell colou	Gley	Texture	% > 20	Stones - ty m > 6cr	pe 1 Stones - type 2 n Type % > 2cm > 6cm Type	Pe Strength Si	d SUBS	STR CaCC	03 Mn (SPL MB	Drought w MBp G	Wet d WC Gw	Final ALC Limitation 1 Limitation 2 Limitation	3 Grade
	NY 04000 23800 3040	00 523800	0 103	≤7	Level	PGR	0 20 46	46	26	10YR4/1 2.5YR5/3 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	0 0 0 0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNo - NNo - NNo	No 81 No Yes	82 1	WC IV 4	Wetness	4
	NY 04100 23800 3041	00 523800	0 106	≤7	Level	PGR		45	15	10YR4/2 10YR5/2 2.5Y6/4	MD - №7.5YR5/8 MD - №7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Cla C - Clay C - Clay	0 0 0 0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNo - NNo - NNo	No 82 No Yes	84 1	WCIV 4	Wetness	4
	NY 04200 23800 3042	00 523800	0 108	≤7	Level	PGR		45		10YR5/2 10YR5/3 2.5Y6/2	MD - N7.5YR5/8 MD - N7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	1 0 0 0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNO - NNO - NNO	No 82 No Yes	83 1	WCIV 4	Wetness	4
	NY 04300 23800 3043	00 523800) 113	≤7	Level	PGR		41	19	10YR4/1 2.5YR5/3 2.5Y6/4	MD - N7.5YR5/8 MD - N7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla HCL - Cla C - Clay		0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNo - NNo - NNo	No 80 No Yes	81 1	WCIV 4	Wetness	4
	NY 04400 23800 3044	00 523800) 113	≤7	Level	PGR	0 30 50	50	20	10YR4/2 10YR5/3 2.5Y6/4	MD - N7.5YR5/8 MD - N7.5YR6/8	MD - N2.5Y6/1	Yes	MCL - Cla HCL - Cla C - Clay		0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNo - NNo - NNo	No 83 No Yes	84 1	WC IV 3b	Wetness	3b
	NY 04500 23800 3045	00 523800) 117	≤7	Level	PGR		48	20	10YR4/2 10YR5/3 2.5Y6/2	MD - 1 10YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/2 MD - N2.5Y6/1	Yes	SCL - San HCL - Cla C - Clay		0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON		No 80 No Yes	81 1	WC IV 3b	Wetness	3b
	NY 04000 23700 3040	00 523700) 119	≤7	Level	PGR		47	24	10YR4/1 2.5YR5/3 2.5Y6/4	MD - 1 7.5YR5/8 MD - 1 7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	2 0 2 0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON		No 80 No Yes	81 1	WC IV 4	Wetness	4
	NY 04100 23700 3041	00 523700) 119	≤7	Level	PGR	0 30 45	45	15	10YR4/2 10YR5/3 2.5Y6/4	MD - N7.5YR5/8 MD - N7.5YR6/8	CD - C(2.5Y6/2	Yes	HCL - Cla C - Clay C - Clay	2 0 1 0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON		No 81 No Yes	82 1	WCIV 4	Wetness	4
	NY 04200 23700 3042	200 523700) 123	≤7	Level	PGR	32	45	13	10YR5/2 10YR5/3 2.5Y6/2	MD - N7.5YR5/8 MD - N7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	0 0 0 0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNO - NNO - NNO	No 83 No Yes	84 1	WCIV 4	Wetness	4
	NY 04500 23700 3045	00 523700) 127	≤7	Level	PGR	26	48	22	10YR4/2 10YR6/3 2.5Y6/2	CD - C(7.5YR5/8 MD - N7.5YR6/8	CD - C(2.5Y6/2	Yes	SCL - San SCL - San C - Clay	0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNo - NNo - NNo	No 76 No Yes	77 1	WC IV 3b	Wetness	3b
	NY 04000 23600 3040	00 523600) 119	≤7	Level	PGR	22	41	19	10YR4/1 2.5YR5/3 2.5Y6/4	MD - №7.5YR5/8 MD - №7.5YR6/8	MD - N2.5Y6/1 MD - N2.5Y6/1	Yes	HCL - Cla HCL - Cla C - Clay	0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNo - NNo - NNo	No 80 No Yes	81 1	WC IV 4	Wetness	4
	NY 04100 23600 3041	.00 523600) 119	≤7	Level	PGR	32	45	13	10YR5/2 10YR5/3 2.5Y6/2	MD - № 7.5YR5/8 MD - № 7.5YR6/8	MD - N2.5Y6/1	Yes	HCL - Cla C - Clay C - Clay	0	0	HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those HR - All hard rocks or stones (i.e. those	which cannot be	scratched wi Mode	erate NON	- NNO - NNO - NNO	No	84 1	WC IV 4	Wetness	4

		Grid re	f.							Depth (cm)	Matrix	Ochreous Mottles	Grey Mottle	s o	. .		Stones - ty	/pe 1	Stones - type 2		Ped					6 P.	Drought	Wet	Final ALC	
POI	INT NGR	Х	Y	,	AIT (M)	Siope	Aspect	Land us	se Top	Bttm	Thick	Munsell colour	Form Munsell colour	Form Munsell co	lour	lexture	% > 2	cm > 6cr	m Type	% > 2cm > 6cm Type	e Strengt	h Size	Shape	SOR2 21K	CaCO3	MnC	SPL MB	w MBp Gd	Wet WC Gw	Limitation 1 Limitation 2 Limit	ation 3 Grade
	·																														
49	NY 04000	0 23500 30	04000 52	23500 1	116	≤7	Level	PGR	0	26	26	10YR4/2				HCL - Cla		0		hard rocks or stones (i.e. the								82 1	WCIV 4	Wetness	4
									26	48	22	10YR6/3	CD - C(7.5YR5/8	CD - C(2.5Y6/2	Yes	C - Clay	0			hard rocks or stones (i.e. the											
									48	120	72	2.5Y6/2	MD - 17.5YR6/8		Yes	C - Clay	0		HR - All	hard rocks or stones (i.e. the	ose which car	nnot be scr	ratched wi	Poor	NON - I	NNO	Yes				
50						-7				20		10/01/1																			
50	NY 04100	0 23500 30	04100 54	23500 1	116	≤7	Level	PGR	0			10YR4/1	00 0 3 5005 /5	00.0000000		HCL - Cla		0		hard rocks or stones (i.e. the								84 1	WCIV 4	Wetness	4
									30			2.5YR5/3 2.5Y6/4	CD - Cr7.5YR5/6 MD - 17.5YR6/8	CD - C(2.5Y6/2 MD - N2.5Y6/1		C - Clay				hard rocks or stones (i.e. the hard rocks or stones (i.e. the					NON - I						
									50	120	70	2.510/4	IVID - 17.51K0/8	MD - N2.510/1	res	C - Clay	U		HK - All	nard rocks of stones (i.e. the	ose which car	mot be scr	atched wi	POOR	NUN - I	NINO	res				
																	1								1						
-	END																1													+	
	2.110								1					1			1			1					1						1

Mottle form

- FF Few Faint
- FD Few Distinct
- FP Few Prominent CF - Common Faint
- CD Common Distinct
- CP Common Prominent
- MF Many Faint
- MD Many Distinct
- MP Many Prominent
- VF Very many Faint
- VD Very many Distinct
- VP Very many Prominent

Texture

C - Clay CHK - Chalk CS - Coarse Sand CSL - Coarse sandy loam CSZL - Coarse sandy silt loam FP - Fibrous and semifibrous peats FS - Fine Sand FSL - Fine sandy loam FSZL - Fine sandy silt loam HCL - Clay loam (heavy) HP - Humified peats HZCL - Silty clay loam (heavy) IMP - Impenetrable to roots LCS - Loamy Coarse Sand LFS - Loamy fine sand LMS - Loamy medium sand LP - Loamy peats MCL - Clay loam (medium) MS - Medium Sand MSL - Medium sandy loam MSZL - Medium sandy silt loam MZ - Marine Light Silts MZCL - Silty clay loam (medium) OC - Organic clays OL - Organic loams OS - Organic sands PL - Peaty loams PS - Peaty sands SC - Sandy clay SCL - Sandy clay loam SP - Sandy peats ZC - Silty clay ZL - Silt loam

Stone Type

CH - Chalk or chalk stones FSST - Soft fine grained sandstones GH - Gravel with non-porous (hard) stones GS - Gravel with porous stones (mainly soft stone types listed above)

- HR All hard rocks or stones (i.e. those which cannot be scratched with a finger nail)
- MSST Soft, medium or coarse grained sandstones
- SI Soft 'weathered' igneous or metamorphic rocks or stones
- SLST Soft oolitic or dolomitic limestones
- ZR Soft, argillaceous or silty rocks or stones

Ped. Shape SG - Single grain

GRA - Granular SAB - Subangular Blocky AB - Angular Blocky PRIS - Prismatic PLAT - Platy MASS - Massive NA - N/A

Subsoil Structure Condition

Not Applicable Good Moderate Poor

Soil or Ped. Strength

Loose Very friable Friable Firm Very firm Extremely firm Extremely hard N/A

Calcareousness

NON - Non-calcareous (<0.5% CaCO3) VSC - Very slightly calcareous (0.5 - 1% CaCO3) SC - Slightly calcareous (1 - 5% CaCO3) MC - Moderately calcareous (5 - 10% CaCO3) VC - Very calcareous (>10% CaCO3)

Ped. Size	
VF - Very Fine	
F - Fine	

M - Medium C - Coarse VC - Very Coarse

NA - N/A

Degree of Ped. Development

W - Weak M - Moderate S - Strong NA - Not applicable

	Wetness Class
WCI	
WC II	
WC III	
WC IV	
WC V	
WC VI	

ALC Grades 1 2 3a 3b 4 5

Non-Ag

	Gley
None	
Gley	
N/A	

Soil Survey							Surveyor	RWA
Easting (X)	303600	Northing (Y)	524200	Alt (m)	104		Grid Reference	NY 03600 24200
Land Use	PGR	Reference	30 (Pit 1)	Slope °	≤7			
Bedrock	Pennine Lower Coal Measures	Superficial	None recorded	Aspect	Level		Date	27/07/2024
Lay	vor	Topsoil	2	3	4	5	6	7
Lower Depth (cm)	Yei	28	49	3 120	4	5	0	/
Texture			HCL - Clay loam (heavy)	C - Clay				
Matrix Colour		10YR4/2	10YR5/3	2.5Y6/4				
Gley (Y/N)		No	Yes	Yes				
	Form		CD - Common Distinct	MD - Many Disti	l			
Ochreous Mottles	Munsell Colour		7.5YR5/8	7.5YR6/8				
	Form		CD - Common Distinct	7.5110/8				
Grey Mottles	Munsell Colour		2.5Y6/2					
Manganese (Y/N)	Widiiseli Coloui	No	No	No				
% Stones (type 1)		0	0	0				
Stones > 2cm		0	0	0				
Stones > 6cm		0						
Stone Type			HR - All hard rocks or ston	HR - All hard roc	l ks or stones (i.e. tl	hose which	cannot be scratch	l ed with a finger
% Stones (type 2)								
Stones > 2cm								
Stones > 6cm								
Stone Type								
CaCO3		NON - Non-calca	NON - Non-calcareous (<0	NON - Non-calca	reous (<0.5% CaC	03)		
Shape of Peds.			AB - Angular Blocky	PRIS - Prismatic				
Size of Peds.		M - Medium	C - Coarse	C - Coarse				
Subsoil Structure		Not Applicable	Moderate	Poor				
Soil or Ped. Strength		Firm	Firm	Firm				
Degree of Ped. Development		M - Moderate	M - Moderate	W - Weak				
Slowly Permeable Layer (Y/N)		No	No	Yes				
MDw	MDp	FCD				Wetness	Class (WC)	WC IV

Calculated Moisture Balance (MB): Wheat = 83mm; Potatoes = 84mm (Grade 1 according to droughtiness)

Notes

Soil Survey							Surveyor	RWA
Easting (X)	303900	Northing (Y)	524800	Alt (m)	92		Grid Reference	NY 03900 24800
Land Use	PGR	Reference	2 (Pit 2)	Slope ^o	≤7			
Bedrock	Pennine Middle Coal Measures	Superficial	Till, Devensian	Aspect	Level		Date	27/07/2024
Lay	/er	Topsoil	2	3	4	5	6	7
Lower Depth (cm)		20	46	120		5	0	,
Texture		HCL - Clay loam	-	C - Clay				
Matrix Colour		10YR4/1	2.5YR5/3	2.5Y6/4				
Gley (Y/N)		No	Yes	Yes				
	Form		MD - Many Distinct	MD - Many Disti	nct			
Ochreous Mottles	Munsell Colour		, 7.5YR5/8	7.5YR6/8				
	Form		MD - Many Distinct	MD - Many Disti	nct			
Grey Mottles	Munsell Colour		2.5Y6/1	2.5Y6/1				
Manganese (Y/N)		No	No	No				
% Stones (type 1)		0	0	0				
Stones > 2cm		0						
Stones > 6cm		0						
Stone Type		HR - All hard roc	HR - All hard rocks or ston	HR - All hard roc	ks or stones (i.e. tl	hose which	cannot be scratch	ed with a finge
% Stones (type 2)								
Stones > 2cm								
Stones > 6cm								
Stone Type								
CaCO3			NON - Non-calcareous (<0		reous (<0.5% CaC	03)		
Shape of Peds.		SAB - Subangula	AB - Angular Blocky	PRIS - Prismatic				
Size of Peds.		M - Medium	C - Coarse	C - Coarse				
Subsoil Structure		Not Applicable	Moderate	Poor				
Soil or Ped. Strength		Firm	Firm	Firm				
Degree of Ped. Development		M - Moderate	M - Moderate	W - Weak				
Slowly Permeable L	ayer (Y/N)	No	No	Yes				
MDw	MDp	FCD	1				Class (WC)	WC IV
5						Wetness	Grade (WE)	4

Dw	MDp	FCD	
-	51	27	294

Wetness	Class (WC)	WC IV
Weiness	Grade (WE)	4

Notes	
-------	--

Calculated Moisture Balance (MB): Wheat = 81mm; Potatoes = 82mm (Grade 1 according to droughtiness)

Appendix E Soil Health

DEAN MOOR SOLAR FARM APPENDIX E: SOIL HEALTH PLANNING INSPECTORATE REFERENCE EN010155 PREPARED ON BEHALF OF FVS DEAN MOOR LIMITED

Project Ref:	EN010155/Appendix E: Soil Health
Status	Draft
Issue/ Rev:	1
Date:	October 2024

Contents

1	Soil Hea	Soil Health					
	1.1	Introduction	. 1				
	1.2	Soil Health	. 1				
	1.3	Soil Organic Matter (SOM)	. 2				
	1.4	Biodiversity in the soil	. 5				
	1.5	Soil structure	. 6				

1 Soil Health

1.1 Introduction

1.1.1 This Appendix E ('Soil Health') to Appendix ES 2.8 (ALC) has been produced for FVS Dean Moor Limited (the 'Applicant') to support the DCO application for the Dean Moor Solar Farm ('the Proposed Development') on approximately 276.5ha of land located between the villages of Gilgarran and Branthwaite in West Cumbria (the 'Site'), which is situated within the administrative area of Cumberland Council ('the Council').

1.2 Soil Health

- 1.2.1 Soil health can be defined as a soil's ability to function and sustain plants, animals and humans as part of the ecosystem. There are five main factors that impact the health of the soil and can have a large influence over its capability and resilience to function, they are:
 - a. Soil structure;
 - b. Soil chemistry;
 - c. Organic matter content;
 - d. Soil biology; and
 - e. Water infiltration, retention and movement through the profile.
- 1.2.2 A healthy soil will have a good combination of all these factors, whilst an unhealthy soil will have a problem with at least one of these. A healthy soil has plenty of air spaces (voids) within it, maintaining aerobic (oxygenated) conditions. A healthy soil will provide a buffer to extremes in temperature (as it allows movement of gases between the soil and the air above) and rainfall (as the soil is well drained). This helps to reduce the impact of extreme weather events.
- 1.2.3 When a soil has limited air spaces, anaerobic conditions (i.e. when oxygen is depleted) dominate, leading to waterlogging and stagnation of roots and the proliferation of anaerobic microbes and denitrification (i.e. the loss of nitrogen from the system). A healthy soil will filter water slowly, retaining the nutrients and plant protection products ('PPP') applied to the crop. If rainfall moves through the soil profile too quickly, or if it is prevented from

entering the soil through compaction or soil sealing, surface runoff increases, taking soil, nutrients and PPP with it. This also increases the risk of flooding.

Summary

1.2.4 A healthy soil has a well-developed soil structure, where soil particles are aggregated into soil peds (structural units) separated by pores or voids. This allows the free movement of water (precipitation) through the soil and facilitates gaseous exchange between the plant roots and the air. These soils are well aerated (oxygenated), which encourages healthy plant (crop) growth and an abundance of soil fauna and aerobic microbes. These soils often have high amounts of soil organic matter (SOM), associated with an accumulation of plant and animal matter, and thus are a good store of soil organic carbon (SOC).

1.3 Soil Organic Matter (SOM)

- 1.3.1 Soil carbon is predominantly derived from carbon fixed by plants. This enters the soil as litter or dung, root tissue turnover, root exudates and carbon allocated to mutualistic fungi. Carbon is mixed into the soil and transformed by biological processes, but some is also carried down the profile by downward movement of rainwater. Where these biological processes are retarded, and mixing does not occur, soils can develop organic layers on their surface, and in waterlogged conditions these become deep peat deposits. Soils on limestone and chalk may also contain inorganic carbon as carbonate compounds. Some ammonia oxidising bacteria also fix carbon.
- 1.3.2 In all habitats, most carbon is stored in soils in the form of SOM, and peaty soils in particular, are major stores of carbon (Natural England, 2012).
- 1.3.3 Globally, soils contain more organic carbon than the vegetation and atmosphere combined (Swift, 2001). Ten billion tonnes of organic carbon are estimated to be stored in United Kingdom ('UK') soils, with over half stored in peat.

- 1.3.4 Soils in England and Wales store 2.4 billion tonnes of carbon of which58% is in the top 30cm of soil (Department for Environment and RuralAffairs (Defra), 2011).
- 1.3.5 Soil carbon is stored in fresh and decomposing litter and as longer-lasting material stored in soil particles, in a complex with clays or in anaerobic waterlogged conditions.
- 1.3.6 England's deep and shallow peaty soils are estimated to contain over 580 million tonnes of carbon (Natural England, 2010), but in surface layers, denser mineral soils contain more carbon than peaty soils (Emmett et al, 2010). In peat, anaerobic conditions caused by waterlogging prevent the breakdown of phenols, which build up and inhibit other decomposition enzymes, while plants producing tannins also inhibit enzyme activity (Defra, 2010A).
- 1.3.7 In lowland fens where waterlogging is due to groundwater, peat can be formed from a wide range of plants that are found in waterlogged conditions.
- 1.3.8 In bogs, where water supply is derived from precipitation only, peat is predominantly formed from Sphagnum mosses and Cotton-grass (Eriophorum spp.), with minor components of other plants reflecting past drier conditions or periods (Natural England, 2013).
- 1.3.9 Cultivation of soils promotes the release of stored soil carbon by mineralisation of soil organic matter to carbon dioxide ('CO²') (Lal, 2004). The conversion of grassland to arable cropland was the largest contributor to soil carbon losses from land use change in the UK between 1990 and 2000 (Ostle et al, 2009). Carbon in the subsoil (below 15 cm for grassland or 30cm plough layer for arable) is more stable and less influenced by surface processes (Defra, 2011A).
- 1.3.10 On mineral soils, environmental stewardship is estimated to have reduced England's agricultural greenhouse gas ('GHG') emissions by around 11%

a year (Defra, 2007), mainly through increases in soil organic carbon delivered by options such as buffer strips that take land out of cultivation.

- 1.3.11 The greatest benefits in terms of increase in soil carbon can be realised through land use change from intensive arable to grasslands (Conant et al, 2001), woodlands or some biofuels (Defra, 2003). Avoiding disturbance of undisturbed soils, and changing land use to grassland, heathland, woodland or wetland is likely to deliver carbon storage benefits (Natural England, 2012A), including on organo-mineral soils (Defra, 2011B). Conversion from arable to grassland may, however, be offset to some extent by methane emissions associated with livestock production.
- 1.3.12 There is ongoing research into how grasslands can be managed to increase carbon storage. Defra Project BD5003 (Ward et al, 2006) found that older, and particularly semi-improved, grasslands are important carbon stores compared to intensively managed, improved grasslands.
- 1.3.13 Soil organic matter is a key indicator of many desirable soil functions. It helps to maintain soil structure, provides and stores nutrients, supports biological activity, increases water retention and stores carbon (Gobin et al, 2011). Early results from Natural England's project BD5001 (Natural England, 2016) indicate that grassland soils in good structural condition tend to have more organic matter than soils in moderate or poor condition. Soils with more organic matter tend to be more resistant and resilient to damage, with this effect interacting with soil texture and biological properties (Defra, 2010C).
- 1.3.14 The best opportunities to increase carbon storage come from planting perennial crops, returning crop residues to the soil and application of organic manures (Defra, 2014).
- 1.3.15 In the short to medium term (up to 10 years) zero tillage (where the land is uncultivated) does not result in increased levels of soil carbon compared to conventional tillage (where the land is cultivation of the land for crops) (Defra, 2014), but global data suggests that zero tillage results in more

total soil carbon storage when applied for 12 years or more (Steinbach and Alvarez, 2006).

Summary

1.3.16 The greatest benefits in terms of increase in SOM, and hence SOC, can be realised through land use change from intensive arable to grasslands. Likewise, SOM and SOC are increased when cultivation of the land for crops (tillage) is stopped, and the land is uncultivated (zero tillage). Global evidence suggests that zero tillage results in more total soil carbon storage when applied for 12 years or more. Therefore, there is evidence that conversion of land from arable to grassland which is uncultivated over the long-term (>12 years), such as that under solar PV arrays, increases SOC and SOM.

1.4 Biodiversity in the soil

- 1.4.1 Biological function of soils can be enhanced by simple approaches that can be integrated into real farm systems, including adapting organic matter management, cultivation approaches and cropping, with likely benefits to both farming and the environment (Natural England, 2012B).
- 1.4.2 Soils are habitats for millions of species, ranging from bacteria, fungi, protozoa, and microscopic invertebrates to mites, springtails, ants, worms and plants. It is estimated that more than 1 in 4 of all living species on earth is a strictly soil-dwelling organism (Decaens et al, 2006).
- 1.4.3 A single gram of soil can contain a billion bacterial cells from up to 10,000 species (Torsvik et al, 1990, 2002).
- 1.4.4 Soil biota are strongly influenced by land management. Modern farming has sought to replace many soil biota functions with less sustainable technological solutions, which lead to loss of soil biodiversity (Stockdale et al, 2006; Defra 2010c). For example, changes in land management practice and land use can have large effects on soil biodiversity over relatively short-time scales. Reducing the intensity of management,

introducing no-tillage management and converting arable land to pasture usually has substantial beneficial effects (Spurgeon et al, 2013).

- 1.4.5 Microbial diversity in the UK reflects soil conditions, especially pH, but also vegetation, climatic and other environmental factors. Distinct specialist communities occur in more extreme soils with low diversity (Griffiths et al, 2012).
- 1.4.6 Current levels of understanding of soil biodiversity are low. Out of approximately 11 million species of soil organisms, an estimated 1.5% have been named and classified (Turbé et al, 2010) and most ecological roles are understood only at a general level.

Summary

1.4.7 Soils are habitats for millions of species, ranging from bacteria, fungi, protozoa, and microscopic invertebrates to mites, springtails, ants, worms and plants. Soil biota are strongly influenced by land management. Modern farming has led to the loss of soil biodiversity. Changes in land management practice and land use can have large effects on soil biodiversity over relatively short-time scales. Reducing the intensity of management, introducing no-tillage management, and converting arable land to pasture, such as grassland under solar PV arrays, has substantial beneficial effects.

1.5 Soil structure

1.5.1 Soil structure is defined by the way individual particles of sand, silt, and clay are assembled. Single particles when assembled appear as larger particles, called aggregates or peds. Soil structure is most usefully described in terms of grade (degree of aggregation), class (average size) and type of aggregates (form), or shape. The degree of aggregation ranges from structureless, through weak and moderate structure to strong structure. The shape of soil aggregates/peds is often describes as platy, prismatic/columnar, angular/subangular, or granular/crumb structure (Farming and Agriculture Organisation, FAO).

- 1.5.2 Soil structure refers to the way that soils are bound together. In a well-structured soil, water and air can move freely through cracks and pores. But a poor soil structure prevents water and air movement, and increases the risk of runoff (Defra, 2008). Soil structure can be improved by increasing sSOM (Cranfield University, 2001).
- 1.5.3 The Game and Wildlife Conservation Trust's Allerton Project (Game and Wildlife Conservation Trust, 2020) has been involved in investigating the sustainable intensification of agriculture through different experiments. Some research has focused on moving away from conventional agricultural practice, with greater emphasis on no-tillage ('no-till'). One of the fields at the Allerton Project has not been ploughed for the last 14 years and the soil structure is visibly different compared to other soils on the farm. No-till systems can help improve soil fertility, create changes to the structure and properties of the soil due to the stability of the environment, and enhance soil biology. Over time the no-till field has had the highest yields compared to the conventional field equivalent on the farm.

Summary

1.5.4 In a well-structured soil, water and air can move freely through cracks and pores. But a poor soil structure prevents water and air movement and increases the risk of runoff. Soil structure is improved when the land is uncultivated over time (no tillage), and when SOM content is increased through the accumulation of plant material, such has roots, in the soil. The aerobic (oxygenated) decomposition of SOM helps to bind soil particles together into aggregates (peds). Therefore, the conversion of land which is tilled for arable to long-term grassland (no tillage), such as that under solar PV arrays, improves soil structure over time.

References

CONANT, R. T., PAUSTIAN, K., & ELLIOTT, E. T., (2001). Grassland Management and Conversion into Grassland: Effects on Soil Carbon, Ecological Applications, 11(2), 343–355

July 2020

Last accessed

DECAENS, T., JIMENEZ, J.J., GIOIA, C., MEASEY, G.J. & LAVELLE, P. 2006. The values of soil animals for conservation biology. European Journal of Soil Biology, 42, 23-38.

DEFRA. 2003. Development of economically & environmentally sustainable methods of C sequestration in agricultural soils - SP0523. Available online @ http://randd.defra.gov.uk/Default.aspx?Module=More&Location=None&ProjectID=10946 Last accessed in July 2020

DEFRA. 2007. Research into the current and potential climate change mitigation effects of Environmental Stewardship - BD2302. Available online @ <u>http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Complet</u> <u>ed=%200&ProjectID=14413</u> Last viewed July 2020

DEFRA. 2008. Maintaining and improving soil structure. Available online @

Last accessed July 2020

DEFRA. 2010A. To evaluate the potential of technologies for increasing carbon storage in soil to mitigate climate change. Sub-project A of Defra project SP1605: studies to support future soil policy. Available online @ http://randd.defra.gov.uk/Document.aspx?Document=SP1605_9702_FRP.pdf Last accessed

http://randd.defra.gov.uk/Document.aspx?Document=SP1605_9702_FRP.pdf Last accessed July 2020

DEFRA. 2010B. Soil Functions, Quality and Degradation – Studies in Support of Implementation of Soil Policy - SP1601. Subproject A: Review of current knowledge on the impacts of climate change on soil processes, functions and biota. Available online @ http://randd.defra.gov.uk/Document.aspx?Document=SP1601_9491_FRP.pdf Last accessed July 2020

DEFRA. 2010C. Review and initial assessment of what makes some soils more resilient to change and how this resilience can be conferred to other soils. Sub-project D of Defra Project SP1605: Studies to support future Soil Policy. Available online @ http://randd.defra.gov.uk/Document.aspx?Document=SP1605_9702_FRP.pdf Last accessed July 2020

DEFRA. 2011A. Review of the evidence base for the status and change of soil carbon below 15 cm from the soil surface in England and Wales. Sub-Project iii of Defra Project SP1106: Soil carbon: studies to explore greenhouse gas emissions and mitigation. Department for Environment, Food and Rural Affairs, Research project final report. Available online @ http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Complet ed=0&ProjectID=17323 Last accessed July 2020

DEFRA. 2011B. Assessment of the response of organo-mineral soils to change in management practices Sub-Project ii of Defra Project SP1106: Soil carbon: studies to explore greenhouse gas emissions and mitigation. Department for Environment, Food and Rural Affairs, Research project final report. Available online @ http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Complet ed=%200&ProjectID=17323 Last accessed July 2020

EMMETT, B.A., REYNOLDS, B., CHAMBERLAIN, P.M., ROWE, E., SPURGEON, D., BRITTAIN, S.A., FROGBROOK, Z., HUGHES, S., LAWLOR, A.J., POSKITT, J., POTTER, E., ROBINSON, D.A., SCOTT, A., WOOD, C. & WOODS, C. 2010. Soils report from 2007, CS Technical Report No. 9/07. Available online @

accessed July 2020

FARMING AND AGRICULTURE ORGANISATION. Soil structure.

Last accessed July 2020

GAME AND WILDLIFE CONSERVATION TRUST. Allerton Project. Available online @ Last accessed July 2020

GOBIN, A., CAMPLING, P., JANSSEN, L., DESMET, N., VAN DELDEN, H., HURKENS, J., LAVELLE, P., BERMAN, S. 2011. Soil organic matter management across the EU – best practices, constraints and trade-offs, Final Report for the European Commission's DG Environment, September 2011. Available online @

Last viewed July 2020

LAL, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22.

NATURAL ENGLAND. 2012A. Carbon Storage by Habitat: Review of the evidence of the impacts of management decisions and condition of carbon stores and sources. Natural England Research Report 043. Available online @

Last accessed July 2020

NATURAL ENGLAND. 2012B. Managing soil biota to deliver ecosystem services (NECR100). Available online @

Last accessed

July 2020

NATURAL ENGLAND. 2010. England's Peatlands: Carbon Storage and Greenhouse Gases. Natural England Research Report NE257. Sheffield: Natural England. Available online @ Last accessed July 2020

NATURAL ENGLAND, 2016. BD5001: Characterisation of soil structural degradation under grassland and development of measures to ameliorate its impact on biodiversity and other soil functions (RP00359). Available online @

Last accessed July

2020

OSTLE, N., LEVY, P.E., EVANS, C.D. & SMITH, P. 2009. UK land use and soil carbon sequestration. Land Use Policy, 26, S274–S283.

SPURGEON, D.J., KEITH, A. M. SCHMIDT, O., LAMMERTSMA, D. & FABER, J. H., 2013. Land use change and management effects on soil diversity and regulation of water flows in soil. BMC Ecology. 13, 46.

STEINBACH, H.S and ALVARAZ, R. (2006). Changes in Soil Organic Carbon Contents and Nitrous Oxide Emissions after Introduction of No-Till in Pampean Agroecosystems. *Journal of Environmental Quality* January:3–13. Available online @

Last accessed July 2020

STOCKDALE, E.A., WATSON, C.A., BLACK, H.I.J. & PHILIPPS, L. 2006. Do farm management practices alter below-ground biodiversity and ecosystem function? - Implications

for Sustainable Land Management. JNCC report No. 364. Peterborough: JNCC. Available online @ <u>http://jncc.defra.gov.uk/page-3934</u> Last accessed July 2020

SWIFT, R.S. 2001. Sequestration of Carbon by Soil. Soil Science, 166, 858-871.

TORSVIK V., GOKSOYR, J. & DAAE, F. 1990. High diversity in DNA of soil bacteria. Applied and Environmental Microbiology, 56, 782-787.

TORSVIK, V., ØVREÅS, L., THINGSTAD, T. F. 2002. Prokaryotic diversity - magnitude, dynamics, and controlling factors. Science, 296, 1064-1066.

TURBÉ, A., DE TONI, A., BENITO, P., LAVELLE, P., LAVELLE, P., RUIZ, N., VAN DER PUTTEN, W.H., LABOUZE, E. & MUDGAL, S. 2010. Soil biodiversity: functions, threats and tools for policy makers. Bio Intelligence Service, IRD, and NIOO, Report for European Commission.

WARD, S.E, WILBY, A and BARDGETT, R (2016) 'Managing grassland diversity for multiple ecosystem services.' Final report, Defra project BD5003. Available online @ Last accessed July 2020.