

## A303 Amesbury to Berwick Down

Applicant's provision of technical reports supporting the Environmental Information Review

Ground Investigation - Phase 6 & 7 Factual Report

Appendix E

Document reference: Redetermination 2.12

Planning Act 2008

The Infrastructure Planning (Examination Procedure) Rules 2010

February 2022





# APPENDIX E - GEOENVIRONMENTAL TESTING

- (i) Laboratory Test Results
- (ii) Laboratory UKAS Accreditation Certificate



## FINAL ANALYTICAL TEST REPORT

**Envirolab Job Number:** 18/08308

**Issue Number:** 1 **Date:** 23 October, 2018

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK

BS3 4EB

Project Manager: enviro@soils.co.uk/Mike Addinall

**Project Name:** A303 Stonehenge Phase 6 Ground Investigation

Project Ref: 733442 Order No: N/A

Date Samples Received:04/10/18Date Instructions Received:10/10/18Date Analysis Completed:23/10/18

Prepared by:

Approved by:



Richard Wong Client Manager



Georgia King Admin & Client Services Supervisor







|                                                                |            |  |  | Joot 11011 70 |  |       |             |
|----------------------------------------------------------------|------------|--|--|---------------|--|-------|-------------|
| Lab Sample ID                                                  | 18/08308/1 |  |  |               |  |       |             |
| Client Sample No                                               | 102        |  |  |               |  |       |             |
| Client Sample ID                                               | BHR7 1821  |  |  |               |  |       |             |
| Depth to Top                                                   | 0.40       |  |  |               |  |       |             |
| Depth To Bottom                                                |            |  |  |               |  |       |             |
| Date Sampled                                                   | 02-Oct-18  |  |  |               |  |       | _           |
| Sample Type                                                    | Soil - ES  |  |  |               |  |       | od re       |
| Sample Matrix Code                                             | 4A         |  |  |               |  | Units | Method ref  |
| % Stones >10mm <sub>A</sub>                                    | 28.2       |  |  |               |  | % w/w | A-T-044     |
| pH <sub>D</sub> M#                                             | 7.38       |  |  |               |  | pН    | A-T-031s    |
| Phosphate (orthophosphate) as PO4 (water sol 2:1) <sub>D</sub> | <10        |  |  |               |  | mg/kg | A-T-026s    |
| Sulphate (water sol 2:1) <sub>D</sub> M#                       | 0.02       |  |  |               |  | g/l   | A-T-026s    |
| Sulphur (total) <sub>D</sub>                                   | 383        |  |  |               |  | mg/kg | A-T-024s    |
| Cyanide (free) <sub>A</sub> <sup>M#</sup>                      | <1         |  |  |               |  | mg/kg | A-T-042sFCN |
| Cyanide (total) <sub>A</sub> <sup>M#</sup>                     | <1         |  |  |               |  | mg/kg | A-T-042sTCN |
| Phenois - Total by HPLC <sub>A</sub>                           | <0.2       |  |  |               |  | mg/kg | A-T-050s    |
| SulphideA                                                      | <5         |  |  |               |  | mg/kg | A-T-S2-s    |
| Organic matter <sub>D</sub> <sup>M#</sup>                      | 3.1        |  |  |               |  | % w/w | A-T-032 OM  |
| Total Organic Carbon <sub>D</sub> <sup>M#</sup>                | 1.81       |  |  |               |  | % w/w | A-T-032s    |
| Antimony₀                                                      | <5         |  |  |               |  | mg/kg | A-T-024s    |
| Arsenic <sub>D</sub> <sup>M#</sup>                             | <1         |  |  |               |  | mg/kg | A-T-024s    |
| Barium <sub>D</sub>                                            | 41         |  |  |               |  | mg/kg | A-T-024s    |
| Beryllium <sub>D</sub> #                                       | <0.5       |  |  |               |  | mg/kg | A-T-024s    |
| Boron (water soluble) <sub>D</sub> <sup>M#</sup>               | <1.0       |  |  |               |  | mg/kg | A-T-027s    |
| Cadmium <sub>D</sub> <sup>M#</sup>                             | 0.6        |  |  |               |  | mg/kg | A-T-024s    |
| Copper <sub>D</sub> <sup>M#</sup>                              | 6          |  |  |               |  | mg/kg | A-T-024s    |
| Chromium <sub>D</sub> <sup>M#</sup>                            | 11         |  |  |               |  | mg/kg | A-T-024s    |
| Chromium (hexavalent) <sub>D</sub>                             | <1         |  |  |               |  | mg/kg | A-T-040s    |
| Chromium (trivalent)                                           | 11         |  |  |               |  | mg/kg | Calc        |
| Lead <sub>D</sub> <sup>M#</sup>                                | 15         |  |  |               |  | mg/kg | A-T-024s    |
| Manganese <sub>D</sub> <sup>M#</sup>                           | 523        |  |  |               |  | mg/kg | A-T-024s    |
| Mercury <sub>D</sub>                                           | <0.17      |  |  |               |  | mg/kg | A-T-024s    |
| Molybdenum <sub>D</sub> <sup>M#</sup>                          | <1         |  |  |               |  | mg/kg | A-T-024s    |
| Nickel <sub>D</sub> <sup>M#</sup>                              | 8          |  |  |               |  | mg/kg | A-T-024s    |
| Selenium <sub>D</sub> #                                        | <1         |  |  |               |  | mg/kg | A-T-024s    |
| Vanadium <sub>D</sub> <sup>M#</sup>                            | 19         |  |  |               |  | mg/kg | A-T-024s    |
| Zinc <sub>D</sub> <sup>M#</sup>                                | 33         |  |  |               |  | mg/kg | A-T-024s    |



|                                                  |            |  | Onome i io | ject Rei: 73 | · · · - |       |            |
|--------------------------------------------------|------------|--|------------|--------------|---------|-------|------------|
| Lab Sample ID                                    | 18/08308/1 |  |            |              |         |       |            |
| Client Sample No                                 | 102        |  |            |              |         |       |            |
| Client Sample ID                                 | BHR7 1821  |  |            |              |         |       |            |
| Depth to Top                                     | 0.40       |  |            |              |         |       |            |
| Depth To Bottom                                  |            |  |            |              |         |       |            |
| Date Sampled                                     | 02-Oct-18  |  |            |              |         |       | ţ          |
| Sample Type                                      | Soil - ES  |  |            |              |         |       | od re      |
| Sample Matrix Code                               | 4A         |  |            |              |         | Units | Method ref |
| PAH-16MS                                         |            |  |            |              |         |       |            |
| Acenaphthene <sub>A</sub> M#                     | <0.01      |  |            |              |         | mg/kg | A-T-019s   |
| Acenaphthylene <sub>A</sub> <sup>M#</sup>        | <0.01      |  |            |              |         | mg/kg | A-T-019s   |
| Anthracene <sub>A</sub> <sup>M#</sup>            | <0.02      |  |            |              |         | mg/kg | A-T-019s   |
| Benzo(a)anthracene <sub>A</sub> M#               | <0.04      |  |            |              |         | mg/kg | A-T-019s   |
| Benzo(a)pyrene <sub>A</sub> <sup>M#</sup>        | 0.04       |  |            |              |         | mg/kg | A-T-019s   |
| Benzo(b)fluorantheneA <sup>M#</sup>              | 0.05       |  |            |              |         | mg/kg | A-T-019s   |
| Benzo(ghi)perylene <sup>M#</sup>                 | <0.05      |  |            |              |         | mg/kg | A-T-019s   |
| Benzo(k)fluoranthene <sub>A</sub> M#             | <0.07      |  |            |              |         | mg/kg | A-T-019s   |
| Chrysene <sub>A</sub> M#                         | <0.06      |  |            |              |         | mg/kg | A-T-019s   |
| Dibenzo(ah)anthracene <sub>A</sub> <sup>M#</sup> | <0.04      |  |            |              |         | mg/kg | A-T-019s   |
| Fluoranthene <sub>A</sub> <sup>M#</sup>          | 0.09       |  |            |              |         | mg/kg | A-T-019s   |
| Fluorene <sub>A</sub> <sup>M#</sup>              | <0.01      |  |            |              |         | mg/kg | A-T-019s   |
| Indeno(123-cd)pyrene <sub>A</sub> M#             | 0.03       |  |            |              |         | mg/kg | A-T-019s   |
| Naphthalene <sub>A</sub> <sup>M#</sup>           | <0.03      |  |            |              |         | mg/kg | A-T-019s   |
| Phenanthrene <sub>A</sub> <sup>M#</sup>          | 0.03       |  |            |              |         | mg/kg | A-T-019s   |
| Pyrene <sub>A</sub> <sup>M#</sup>                | <0.07      |  |            |              |         | mg/kg | A-T-019s   |
| Total PAH-16MS <sub>A</sub> M#                   | 0.24       |  |            |              |         | mg/kg | A-T-019s   |



|                                         |            |      | ,    | , |      |       |            |
|-----------------------------------------|------------|------|------|---|------|-------|------------|
| Lab Sample ID                           | 18/08308/1 |      |      |   |      |       |            |
| Client Sample No                        | 102        |      |      |   |      |       |            |
| Client Sample ID                        | BHR7 1821  |      |      |   |      |       |            |
| Depth to Top                            | 0.40       |      |      |   |      |       |            |
| Depth To Bottom                         |            |      |      |   |      |       |            |
| Date Sampled                            | 02-Oct-18  |      |      |   |      |       |            |
| Sample Type                             | Soil - ES  |      |      |   |      |       | od re      |
| Sample Matrix Code                      | 4A         |      |      |   |      | Units | Method ref |
| TPH CWG                                 |            |      |      |   |      |       |            |
| Ali >C5-C6 <sub>A</sub> #               | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| Ali >C6-C8 <sub>A</sub> #               | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| Ali >C8-C10 <sub>A</sub> M#             | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Ali >C10-C12 <sub>A</sub> M#            | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Ali >C12-C16 <sub>A</sub> M#            | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Ali >C16-C21 <sub>A</sub> M#            | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Ali >C21-C35A                           | 3          |      |      |   |      | mg/kg | A-T-055s   |
| Total Aliphatics >C5-C35 <sub>A</sub>   | 3          |      |      |   |      | mg/kg | A-T-055s   |
| Aro >C5-C7 <sub>A</sub> #               | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| Aro >C7-C8 <sub>A</sub> #               | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| Aro >C8-C10 <sub>A</sub> <sup>M#</sup>  | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Aro >C10-C12 <sub>A</sub> <sup>M#</sup> | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Aro >C12-C16A                           | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Aro >C16-C21 <sub>A</sub> <sup>M#</sup> | <1         |      |      |   |      | mg/kg | A-T-055s   |
| Aro >C21-C35 <sub>A</sub> M#            | 8          |      |      |   |      | mg/kg | A-T-055s   |
| Total Aromatics >C5-C35 <sub>A</sub>    | 8          |      |      |   |      | mg/kg | A-T-055s   |
| TPH (Ali & Aro >C5-C35) <sub>A</sub>    | 10         |      |      |   |      | mg/kg | A-T-055s   |
| BTEX - Benzene <sup>#</sup>             | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| BTEX - Toluene <sub>A</sub> #           | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| BTEX - Ethyl Benzene <sub>A</sub> #     | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| BTEX - m & p Xylene <sub>A</sub> #      | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| BTEX - o Xylene <sub>A</sub> #          | <0.01      |      |      |   |      | mg/kg | A-T-022s   |
| MTBE <sub>A</sub> #                     | <0.01      | <br> | <br> |   | <br> | mg/kg | A-T-022s   |



## **REPORT NOTES**

#### General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

### Soil chemical analysis:

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

#### TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

#### Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25 ℃ / 11550µS/cm @ 20 ℃ fall outside the calibration range and as such are unaccredited.

#### Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

#### **Predominant Matrix Codes:**

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

## **Secondary Matrix Codes:**

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

## Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.



## FINAL ANALYTICAL TEST REPORT

**Envirolab Job Number:** 18/08216

**Issue Number:** 1 **Date:** 23 October, 2018

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK Bris

**BS3 4EB** 

**Project Manager:** enviro@soils.co.uk/Mike Addinall

**Project Name:** A303 Stonehenge Phase 6 Ground Investigation

Project Ref: 733442 Order No: N/A

Date Samples Received: 04/10/18
Date Instructions Received: 10/10/18
Date Analysis Completed: 23/10/18

Prepared by: Approved by:

Gill Walker

Director/Laboratory Manager

Danielle Brierley Client Manager







| Lab Sample ID                                                                   | 18/08216/1 |  |  |  |       |                |
|---------------------------------------------------------------------------------|------------|--|--|--|-------|----------------|
| Client Sample No                                                                | 101        |  |  |  |       |                |
| Client Sample ID                                                                | R71805     |  |  |  |       |                |
| Depth to Top                                                                    | 0.30       |  |  |  |       |                |
| Depth To Bottom                                                                 |            |  |  |  |       |                |
| Date Sampled                                                                    | 02-Oct-18  |  |  |  |       |                |
| Sample Type                                                                     | Soil - ES  |  |  |  |       | od re          |
| Sample Matrix Code                                                              | 4AE        |  |  |  | Units | Method ref     |
| % Stones >10mm <sub>A</sub>                                                     | 8.0        |  |  |  | % w/w | A-T-044        |
| pH <sub>D</sub> M#                                                              | 7.90       |  |  |  | рН    | A-T-031s       |
| Phosphate (orthophosphate) as PO4 (water sol 2:1) <sub>D</sub>                  | <10        |  |  |  | mg/kg | A-T-026s       |
| Sulphate (water sol 2:1) <sub>D</sub> <sup>M#</sup>                             | 0.02       |  |  |  | g/l   | A-T-026s       |
| Sulphur (total) <sub>D</sub>                                                    | 674        |  |  |  | mg/kg | A-T-024s       |
| Cyanide (free) <sub>A</sub> M#                                                  | <1         |  |  |  | mg/kg | A-T-042sFCN    |
| Cyanide (total) <sub>A</sub> <sup>M#</sup>                                      | <1         |  |  |  | mg/kg | A-T-042sTCN    |
| Phenois - Total by HPLC <sub>A</sub>                                            | <0.2       |  |  |  | mg/kg | A-T-050s       |
| SulphideA                                                                       | <5         |  |  |  | mg/kg | A-T-S2-s       |
| Organic matter <sub>D</sub> M#                                                  | 7.3        |  |  |  | % w/w | A-T-032 OM     |
| Total Organic Carbon <sub>D</sub> <sup>M#</sup>                                 | 4.20       |  |  |  | % w/w | A-T-032s       |
| Antimony <sub>D</sub>                                                           | <5         |  |  |  | mg/kg | A-T-024s       |
| Arsenic <sub>D</sub> <sup>M#</sup>                                              | <1         |  |  |  | mg/kg | A-T-024s       |
| Barium <sub>D</sub>                                                             | 82         |  |  |  | mg/kg | A-T-024s       |
| Beryllium <sub>D</sub> #                                                        | 0.6        |  |  |  | mg/kg | A-T-024s       |
| Boron (water soluble) <sub>D</sub> <sup>M#</sup>                                | 1.6        |  |  |  | mg/kg | A-T-027s       |
| Cadmium <sub>D</sub> <sup>M#</sup>                                              | 1.0        |  |  |  | mg/kg | A-T-024s       |
| Copper <sub>D</sub> <sup>M#</sup>                                               | 10         |  |  |  | mg/kg | A-T-024s       |
| Chromium <sub>D</sub> <sup>M#</sup>                                             | 19         |  |  |  | mg/kg | A-T-024s       |
| Chromium (hexavalent) <sub>D</sub>                                              | <1         |  |  |  | mg/kg | A-T-040s       |
| Chromium (trivalent)                                                            | 19         |  |  |  | mg/kg | Calc           |
| Lead <sub>D</sub> <sup>M#</sup>                                                 | 16         |  |  |  | mg/kg | A-T-024s       |
| Manganese <sub>D</sub> <sup>M#</sup>                                            | 1040       |  |  |  | mg/kg | A-T-024s       |
| Mercury <sub>D</sub>                                                            | <0.17      |  |  |  | mg/kg | A-T-024s       |
| Molybdenum <sub>D</sub> <sup>M#</sup>                                           | <1         |  |  |  | mg/kg | A-T-024s       |
| Nickel <sub>D</sub> <sup>M#</sup>                                               | 14         |  |  |  | mg/kg | A-T-024s       |
| Selenium <sub>D</sub> #                                                         | <1         |  |  |  | mg/kg | A-T-024s       |
| Vanadium <sub>D</sub> <sup>M#</sup>                                             | 30         |  |  |  | mg/kg | A-T-024s       |
| Zinc <sub>D</sub> <sup>M#</sup>                                                 | 63         |  |  |  | mg/kg | A-T-024s       |
| Intestinal Enterococci (Faecal<br>Streptococci/Faecal Enterococci) <sub>A</sub> | 90         |  |  |  | cfu/g | Subcon Mercian |
| E-Coli (Faecal Coliforms) <sub>A</sub>                                          | <10        |  |  |  | cfu/g | Subcon Mercian |
| Coliforms (total) <sub>A</sub>                                                  | 100        |  |  |  | cfu/g | Subcon Mercian |





| Lab Sample ID                                         | 18/08216/1 |  |  |  |       |            |
|-------------------------------------------------------|------------|--|--|--|-------|------------|
| Client Sample No                                      | 101        |  |  |  |       |            |
| Client Sample ID                                      | R71805     |  |  |  |       |            |
| Depth to Top                                          | 0.30       |  |  |  |       |            |
| Depth To Bottom                                       |            |  |  |  |       |            |
| Date Sampled                                          | 02-Oct-18  |  |  |  |       | <u>پ</u>   |
| Sample Type                                           | Soil - ES  |  |  |  |       | Method ref |
| Sample Matrix Code                                    | 4AE        |  |  |  | Units | Meth       |
| Asbestos in Soil (inc. matrix)                        |            |  |  |  |       |            |
| Asbestos in soil <sub>A</sub> #                       | NAD        |  |  |  |       | A-T-045    |
| Asbestos ACM - Suitable for Water<br>Absorption Test? | N/A        |  |  |  |       |            |



|                                                 |            |  |  | ject Kei. 73 | - |       |            |
|-------------------------------------------------|------------|--|--|--------------|---|-------|------------|
| Lab Sample ID                                   | 18/08216/1 |  |  |              |   |       |            |
| Client Sample No                                | 101        |  |  |              |   |       |            |
| Client Sample ID                                | R71805     |  |  |              |   |       |            |
| Depth to Top                                    | 0.30       |  |  |              |   |       |            |
| Depth To Bottom                                 |            |  |  |              |   |       |            |
| Date Sampled                                    | 02-Oct-18  |  |  |              |   |       | <b>.</b>   |
| Sample Type                                     | Soil - ES  |  |  |              |   |       | Method ref |
| Sample Matrix Code                              | 4AE        |  |  |              |   | Units | Meth       |
| PAH-16MS                                        |            |  |  |              |   |       |            |
| Acenaphthene <sub>A</sub> <sup>M#</sup>         | <0.01      |  |  |              |   | mg/kg | A-T-019s   |
| Acenaphthylene <sub>A</sub> <sup>M#</sup>       | <0.01      |  |  |              |   | mg/kg | A-T-019s   |
| Anthracene <sub>A</sub> M#                      | <0.02      |  |  |              |   | mg/kg | A-T-019s   |
| Benzo(a)anthracene <sub>A</sub> <sup>M#</sup>   | <0.04      |  |  |              |   | mg/kg | A-T-019s   |
| Benzo(a)pyrene <sub>A</sub> <sup>M#</sup>       | <0.04      |  |  |              |   | mg/kg | A-T-019s   |
| Benzo(b)fluoranthene <sub>A</sub> <sup>M#</sup> | <0.05      |  |  |              |   | mg/kg | A-T-019s   |
| Benzo(ghi)perylene <sub>A</sub> <sup>M#</sup>   | <0.05      |  |  |              |   | mg/kg | A-T-019s   |
| Benzo(k)fluoranthene <sub>A</sub> <sup>M#</sup> | <0.07      |  |  |              |   | mg/kg | A-T-019s   |
| Chrysene <sub>A</sub> <sup>M#</sup>             | <0.06      |  |  |              |   | mg/kg | A-T-019s   |
| Dibenzo(ah)anthracene <sub>A</sub> M#           | <0.04      |  |  |              |   | mg/kg | A-T-019s   |
| Fluoranthene <sub>A</sub> <sup>M#</sup>         | <0.08      |  |  |              |   | mg/kg | A-T-019s   |
| Fluorene <sub>A</sub> <sup>M#</sup>             | <0.01      |  |  |              |   | mg/kg | A-T-019s   |
| Indeno(123-cd)pyrene <sub>A</sub> M#            | <0.03      |  |  |              |   | mg/kg | A-T-019s   |
| Naphthalene <sub>A</sub> <sup>M#</sup>          | <0.03      |  |  |              |   | mg/kg | A-T-019s   |
| Phenanthrene <sub>A</sub> <sup>M#</sup>         | <0.03      |  |  |              |   | mg/kg | A-T-019s   |
| Pyrene <sub>A</sub> <sup>M#</sup>               | <0.07      |  |  |              |   | mg/kg | A-T-019s   |
| Total PAH-16MS <sub>A</sub> M#                  | <0.08      |  |  |              |   | mg/kg | A-T-019s   |



| Lab Sample ID                          | 18/08216/1 |  |  |  |       |            |
|----------------------------------------|------------|--|--|--|-------|------------|
| Client Sample No                       | 101        |  |  |  |       |            |
| Client Sample ID                       | R71805     |  |  |  |       |            |
| Depth to Top                           | 0.30       |  |  |  |       |            |
| Depth To Bottom                        |            |  |  |  |       |            |
| Date Sampled                           | 02-Oct-18  |  |  |  |       |            |
| Sample Type                            | Soil - ES  |  |  |  |       | od ref     |
| Sample Matrix Code                     | 4AE        |  |  |  | Units | Method ref |
| TPH CWG                                |            |  |  |  |       |            |
| Ali >C5-C6 <sub>A</sub> #              | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Ali >C6-C8 <sub>A</sub> #              | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Ali >C8-C10 <sub>A</sub> <sup>M#</sup> | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C10-C12 <sub>A</sub> M#           | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C12-C16 <sub>A</sub> M#           | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C16-C21 <sub>A</sub> M#           | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C21-C35 <sub>A</sub>              | 4          |  |  |  | mg/kg | A-T-055s   |
| Total Aliphatics >C5-C35 <sub>A</sub>  | 4          |  |  |  | mg/kg | A-T-055s   |
| Aro >C5-C7 <sub>A</sub> #              | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Aro >C7-C8 <sub>A</sub> #              | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Aro >C8-C10 <sub>A</sub> <sup>M#</sup> | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C10-C12 <sub>A</sub> M#           | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C12-C16 <sub>A</sub>              | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C16-C21 <sub>A</sub> M#           | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C21-C35 <sub>A</sub> M#           | 12         |  |  |  | mg/kg | A-T-055s   |
| Total Aromatics >C5-C35 <sub>A</sub>   | 12         |  |  |  | mg/kg | A-T-055s   |
| TPH (Ali & Aro >C5-C35) <sub>A</sub>   | 16         |  |  |  | mg/kg | A-T-055s   |
| BTEX - Benzene <sub>A</sub> #          | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - Toluene <sub>A</sub> #          | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - Ethyl Benzene <sub>A</sub> #    | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - m & p Xylene <sub>A</sub> #     | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - o Xylene <sub>A</sub> #         | <0.01      |  |  |  | mg/kg | A-T-022s   |
| MTBE <sub>A</sub> #                    | <0.01      |  |  |  | mg/kg | A-T-022s   |



### **REPORT NOTES**

#### General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

### Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

#### TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

### Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

#### Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

#### **Predominant Matrix Codes:**

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

## **Secondary Matrix Codes:**

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

#### Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.



## FINAL ANALYTICAL TEST REPORT

**Envirolab Job Number:** 18/08233

**Issue Number:** 1 **Date:** 19 October, 2018

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK

BS3 4EB

**Project Manager:** enviro@soils.co.uk/Glen Spence/Mike Addinall **Project Name:** A303 Stonehenge Phase 6 Ground Investigation

Project Ref: 733442 Order No: N/A

Date Samples Received:08/10/18Date Instructions Received:08/10/18Date Analysis Completed:18/10/18

Prepared by: Approved by:

Danielle Brierley Client Manager Iain Haslock

**Analytical Consultant** 







|                                                     |            |  |  | ,000 10011 70 |  |       |              |
|-----------------------------------------------------|------------|--|--|---------------|--|-------|--------------|
| Lab Sample ID                                       | 18/08233/1 |  |  |               |  |       |              |
| Client Sample No                                    | 101        |  |  |               |  |       |              |
| Client Sample ID                                    | R71817     |  |  |               |  |       |              |
| Depth to Top                                        | 0.10       |  |  |               |  |       |              |
| Depth To Bottom                                     |            |  |  |               |  |       |              |
| Date Sampled                                        | 04-Oct-18  |  |  |               |  |       | <del>,</del> |
| Sample Type                                         | Soil - ES  |  |  |               |  |       | Method ref   |
| Sample Matrix Code                                  | 4AE        |  |  |               |  | Units | Meth         |
| % Stones >10mm <sub>A</sub>                         | 26.0       |  |  |               |  | % w/w | A-T-044      |
| pH <sub>D</sub> M#                                  | 7.76       |  |  |               |  | pН    | A-T-031s     |
| Sulphate (water sol 2:1) <sub>D</sub> <sup>M#</sup> | 0.02       |  |  |               |  | g/I   | A-T-026s     |
| Organic matter <sub>D</sub> <sup>M#</sup>           | 6.0        |  |  |               |  | % w/w | A-T-032 OM   |
| Arsenic <sub>D</sub> <sup>M#</sup>                  | <1         |  |  |               |  | mg/kg | A-T-024s     |
| Cadmium <sub>D</sub> <sup>M#</sup>                  | 1.5        |  |  |               |  | mg/kg | A-T-024s     |
| Copper <sub>D</sub> <sup>M#</sup>                   | 9          |  |  |               |  | mg/kg | A-T-024s     |
| Chromium <sub>D</sub> <sup>M#</sup>                 | 16         |  |  |               |  | mg/kg | A-T-024s     |
| Lead <sub>D</sub> <sup>M#</sup>                     | 16         |  |  |               |  | mg/kg | A-T-024s     |
| Mercury <sub>D</sub>                                | <0.17      |  |  |               |  | mg/kg | A-T-024s     |
| Nickel <sub>D</sub> <sup>M#</sup>                   | 13         |  |  |               |  | mg/kg | A-T-024s     |
| Selenium <sub>D</sub> #                             | <1         |  |  |               |  | mg/kg | A-T-024s     |
| Zinc <sub>D</sub> <sup>M#</sup>                     | 44         |  |  |               |  | mg/kg | A-T-024s     |



| 18/08233/1 |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 101        |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R71817     |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.10       |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 04-Oct-18  |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Soil - ES  |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4AE        |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Meth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <0.01      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.01      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.02      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.04      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.04      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.05      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.05      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.07      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.06      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.04      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.08      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.01      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.03      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.03      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.03      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.07      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <0.08      |                                                                                                                               |                                                                                                                                |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                                                                                                                                                          |                                                                                                                                                             | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-T-019s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            | 101 R71817 0.10  04-Oct-18 Soil - ES 4AE  <0.01 <0.02 <0.04 <0.05 <0.05 <0.07 <0.06 <0.04 <0.08 <0.01 <0.03 <0.03 <0.03 <0.07 | 101 R71817 0.10  04-Oct-18 Soil - ES  4AE  <0.01 <0.02 <0.04 <0.04 <0.05 <0.05 <0.07 <0.06 <0.04 <0.08 <0.01 <0.03 <0.03 <0.07 | 101 R71817 0.10  04-Oct-18 Soil - ES  4AE  <0.01 <0.02 <0.04 <0.04 <0.05 <0.05 <0.05 <0.07 <0.06 <0.04 <0.08 <0.01 <0.03 <0.03 <0.03 <0.07 | 101   R71817   O.10   O4-Oct-18   Soil - ES   AAE   O.01   O.02   O.04   O.05   O.05   O.05   O.05   O.06   O.07   O.06   O.08   O.01   O.08   O.01   O.03   O.03   O.03   O.03   O.03   O.03   O.03   O.07   O.06   O.07   O.06   O.07   O.06   O.07   O.08   O.09   O.09 | 101 R71817 0.10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 101 R71817 0.10  04-Oct-18 Soil - ES  4AE  <0.01 <0.01 <0.02 <0.04 <0.04 <0.05 <0.05 <0.05 <0.07 <0.06 <0.04 <0.08 <0.01 <0.08 <0.01 <0.03 <0.03 <0.03 <0.03 <0.03 <0.07 | 101 R71817 0.10 04-Oct-18 Soil - ES  4AE  -0.01 -0.02 -0.04 -0.04 -0.05 -0.05 -0.07 -0.06 -0.07 -0.08 -0.01 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.07 | 101   R71817   R71817 | 101   R71817   R71817 |



| Lab Sample ID                           | 18/08233/1 |  |  |  |       |            |
|-----------------------------------------|------------|--|--|--|-------|------------|
| Client Sample No                        | 101        |  |  |  |       |            |
| Client Sample ID                        | R71817     |  |  |  |       |            |
| Depth to Top                            | 0.10       |  |  |  |       |            |
| Depth To Bottom                         |            |  |  |  |       |            |
| Date Sampled                            | 04-Oct-18  |  |  |  |       |            |
| Sample Type                             | Soil - ES  |  |  |  |       | od rei     |
| Sample Matrix Code                      | 4AE        |  |  |  | Units | Method ref |
| TPH CWG                                 |            |  |  |  |       |            |
| Ali >C5-C6 <sub>A</sub> #               | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Ali >C6-C8 <sub>A</sub> #               | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Ali >C8-C10 <sub>A</sub> M#             | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C10-C12 <sub>A</sub> M#            | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C12-C16 <sub>A</sub> M#            | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C16-C21AM#                         | <1         |  |  |  | mg/kg | A-T-055s   |
| Ali >C21-C35 <sub>A</sub>               | 5          |  |  |  | mg/kg | A-T-055s   |
| Total Aliphatics >C5-C35 <sub>A</sub>   | 5          |  |  |  | mg/kg | A-T-055s   |
| Aro >C5-C7 <sub>A</sub> #               | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Aro >C7-C8 <sub>A</sub> #               | <0.01      |  |  |  | mg/kg | A-T-022s   |
| Aro >C8-C10 <sub>A</sub> <sup>M#</sup>  | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C10-C12 <sub>A</sub> <sup>M#</sup> | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C12-C16 <sub>A</sub>               | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C16-C21 <sub>A</sub> M#            | <1         |  |  |  | mg/kg | A-T-055s   |
| Aro >C21-C35 <sub>A</sub> M#            | 16         |  |  |  | mg/kg | A-T-055s   |
| Total Aromatics >C5-C35 <sub>A</sub>    | 18         |  |  |  | mg/kg | A-T-055s   |
| TPH (Ali & Aro >C5-C35) <sub>A</sub>    | 22         |  |  |  | mg/kg | A-T-055s   |
| BTEX - Benzene <sub>A</sub> #           | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - Toluene <sub>A</sub> #           | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - Ethyl Benzene <sup>#</sup>       | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - m & p Xylene <sub>A</sub> #      | <0.01      |  |  |  | mg/kg | A-T-022s   |
| BTEX - o Xylene <sub>A</sub> #          | <0.01      |  |  |  | mg/kg | A-T-022s   |
| MTBE <sub>A</sub> #                     | <0.01      |  |  |  | mg/kg | A-T-022s   |



### **REPORT NOTES**

#### General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure, these are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

### Soil chemical analysis:

All results are reported as dry weight (<40°C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

#### TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

#### Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25°C / 11550µS/cm @ 20°C fall outside the calibration range and as such are unaccredited.

#### Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

#### **Predominant Matrix Codes:**

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

## **Secondary Matrix Codes:**

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

#### Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.



Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

# Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 744940-1

Date of Report: 09-Jul-2018

Customer: Structural Soils Ltd

The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Customer Contact: Mr Michael Addinall

Customer Job Reference: 733442

Customer Site Reference: A303 Stonehenge Phase 6 Ground

Investigation

Date Job Received at Concept: 15-Jun-2018

Date Analysis Started: 18-Jun-2018 Date Analysis Completed: 09-Jul-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical
Services Quality Manual



Report checked and authorised by : Aneta Dybek-Echtermeyer Customer Service Advisor Issued by :
Aneta Dybek-Echtermeyer
Customer Service Advisor



Concept Reference: 744940

Project Site: A303 Stonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     |        |                | Concep    | ot Reference | 744940 001             | 744940 002             | 744940 003  | 744940 004             | 744940 005             |
|-------------------------------------|--------|----------------|-----------|--------------|------------------------|------------------------|-------------|------------------------|------------------------|
|                                     |        | Custor         | ner Sampl | le Reference | BHR602 SUB<br>SAMPLE 1 | BHR602 SUB<br>SAMPLE 2 | BHR602      | BHR602 SUB<br>SAMPLE 1 | BHR602 SUB<br>SAMPLE 2 |
|                                     |        |                |           | Depth        | 14.90-15.10            | 14.90-15.10            | 19.95-20.00 | 24.35-24.50            | 24.35-24.50            |
|                                     |        |                |           | Top Depth    | 14.90-15.10            | 14.90-15.10            | 19.95-20.00 | 24.35-24.50            | 24.35-24.50            |
|                                     |        |                | Da        | ate Sampled  | Deviating              | Deviating              | Deviating   | Deviating              | Deviating              |
|                                     |        |                |           | AGS Type     | D                      | D                      | D           | D                      | D                      |
|                                     |        | А              | GS Sampl  | le Reference | 12                     | 12                     | 16          | 19                     | 19                     |
| Determinand                         | Method | Test<br>Sample | LOD       | Units        |                        |                        |             |                        |                        |
| orthophosphate                      | T686   | 2:1-1          | 0.5       | mg/l         | <0.5                   | <0.5                   | <0.5        | (IS)                   | <0.5                   |
| P (Dissolved)                       | T373   | 2:1-1          | 1         | mg/l         | <1                     | <1                     | <1          | (IS)                   | <1                     |
| P (Total)                           | T303   | 2:1-1          | 1         | mg/l         | <1                     | <1                     | <1          | (IS)                   | <1                     |
| Chloride                            | T686   | 2:1-1          | 1         | mg/l         | 2                      | 2                      | 2           | (IS)                   | 3                      |
| Sulphate                            | T11    | 2:1-1          | 0.05      | mg/l         | 12                     | 11                     | 3.3         | (IS)                   | 2.1                    |
| Calcium                             | T6     | 2:1-1          | 0.1       | mg/l         | 22                     | 20                     | 13          | (IS)                   | 18                     |
| Magnesium                           | T6     | 2:1-1          | 0.1       | mg/l         | 0.2                    | 0.1                    | 0.2         | (IS)                   | 0.2                    |
| Potassium                           | T6     | 2:1-1          | 0.1       | mg/l         | <0.1                   | <0.1                   | <0.1        | (IS)                   | <0.1                   |
| Sodium                              | T6     | 2:1-1          | 0.1       | mg/l         | 1.0                    | 0.7                    | 0.9         | (IS)                   | 1.2                    |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10        | mg/l         | 61                     | 98                     | 26000       | (IS)                   | 320                    |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10        | mg/l         | 50                     | 100                    | 21000       | (IS)                   | 260                    |

Concept Reference: 744940

Project Site: A303 Stonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     |           |                | Conce    | ot Reference | 744940 006  |
|-------------------------------------|-----------|----------------|----------|--------------|-------------|
|                                     | 73/1      | Custon         | ner Samp | le Reference | BHR602      |
|                                     | 1900      |                | der EF   | Depth        | 29.70-29.80 |
|                                     |           | - 9            |          | Top Depth    | 29.70-29.80 |
|                                     | Deviating |                |          |              |             |
|                                     | D         |                |          |              |             |
|                                     |           | Α              | GS Samp  | le Reference | 23          |
| Determinand                         | Method    | Test<br>Sample | LOD      | Units        |             |
| orthophosphate                      | T686      | 2:1-1          | 0.5      | mg/l         | <0.5        |
| P (Dissolved)                       | T373      | 2:1-1          | 1        | mg/l         | <1          |
| P (Total)                           | T303      | 2:1-1          | 1        | mg/l         | <1          |
| Chloride                            | T686      | 2:1-1          | 1        | mg/l         | 2           |
| Sulphate                            | T11       | 2:1-1          | 0.05     | mg/l         | 3.1         |
| Calcium                             | T6        | 2:1-1          | 0.1      | mg/l         | 15          |
| Magnesium                           | T6        | 2:1-1          | 0.1      | mg/l         | 0.2         |
| Potassium                           | T6        | 2:1-1          | 0.1      | mg/l         | 0.1         |
| Sodium                              | T6        | 2:1-1          | 0.1      | mg/l         | 0.9         |
| Alkalinity expressed as Bicarbonate | T85       | 2:1-1          | 10       | mg/l         | 37          |
| Alkalinity expressed as CaCO3       | mg/l      | 50             |          |              |             |

## Index to symbols used in 744940-1

| Value | Description                     |
|-------|---------------------------------|
| 2:1-1 | Leachate to BS EN 12457-1 (2:1) |
| IS    | Insufficient Sample             |
| U     | Analysis is UKAS accredited     |
| N     | Analysis is not UKAS accredited |

## **Notes**

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

## **Method Index**

| Value | Description        |
|-------|--------------------|
| T85   | Calc               |
| T373  | ICP/OES (Filtered) |
| T686  | Discrete Analyser  |
| T22   | Titration          |
| T11   | IC                 |
| T303  | ICP-OES (Total)    |
| T6    | ICP/OES            |

## **Accreditation Summary**

| Determinand                         | Method | Test<br>Sample | LOD  | Units | Symbol | Concept References |
|-------------------------------------|--------|----------------|------|-------|--------|--------------------|
| orthophosphate                      | T686   | 2:1-1          | 0.5  | mg/l  | N      | 001-006            |
| P (Dissolved)                       | T373   | 2:1-1          | 1    | mg/l  | N      | 001-006            |
| P (Total)                           | T303   | 2:1-1          | 1    | mg/l  | N      | 001-006            |
| Chloride                            | T686   | 2:1-1          | 1    | mg/l  | U      | 001-006            |
| Sulphate                            | T11    | 2:1-1          | 0.05 | mg/l  | N      | 001-006            |
| Calcium                             | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-006            |
| Magnesium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-006            |
| Potassium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-006            |
| Sodium                              | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-006            |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10   | mg/l  | N      | 001-006            |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10   | mg/l  | N      | 001-006            |



Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

# Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 749318-5

Date of Report: 19-Sep-2018

Customer: Structural Soils Ltd

The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Customer Contact: Mr Michael Addinall

Customer Job Reference: 733442

Customer Site Reference: A303 Stonehenge Phase 6 Ground

Investigation

Date Job Received at Concept: 04-Jul-2018

Date Analysis Started: 05-Jul-2018

Date Analysis Completed: 19-Sep-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical
Services Quality Manual



Report checked and authorised by : Zoe Gunter Customer Service Advisor Issued by : Zoe Gunter Customer Service Advisor



Concept Reference: 749318

Project Site: A303 Stonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     |        |                | Concep       | ot Reference | 749318 001                               | 749318 002  | 749318 004                               | 749318 006  | 749318 007  |
|-------------------------------------|--------|----------------|--------------|--------------|------------------------------------------|-------------|------------------------------------------|-------------|-------------|
|                                     | Custon | ner Sampl      | le Reference | BH RZ 603    | BH RZ 603 duplicate<br>(leachate pH 6.2) | BH RZ 603   | BH RZ 603 duplicate<br>(leachate pH 6.2) | BH RZ 603   |             |
|                                     |        |                | Top Depth    | 21.08        | 21.08                                    | 16.42       | 16.42                                    | 31.2        |             |
| Bottom Depth                        |        |                |              |              |                                          |             |                                          |             |             |
| Date Sampled                        |        |                |              | ate Sampled  | 31-MAY-2018                              | 31-MAY-2018 | 30-MAY-2018                              | 30-MAY-2018 | 02-JUL-2018 |
| Determinand                         | Method | Test<br>Sample | LOD          | Units        |                                          |             |                                          |             |             |
| orthophosphate                      | T686   | 2:1-1          | 0.5          | mg/l         | <0.5                                     | <0.5        | <0.5                                     | <0.5        | <0.5        |
| P (Dissolved)                       | T373   | 2:1-1          | 1            | mg/l         | <1                                       | <1          | <1                                       | <1          | <1          |
| P (Total)                           | T303   | 2:1-1          | 1            | mg/l         | <1                                       | <1          | <1                                       | <1          | <1          |
| Chloride                            | T686   | 2:1-1          | 1            | mg/l         | 4                                        | 5           | 2                                        | 2           | 2           |
| Sulphate                            | T11    | 2:1-1          | 0.05         | mg/l         | 3.0                                      | 1.8         | 7.6                                      | 7.4         | 4.2         |
| Calcium                             | T6     | 2:1-1          | 0.1          | mg/l         | 27                                       | 22          | 32                                       | 32          | 21          |
| Magnesium                           | T6     | 2:1-1          | 0.1          | mg/l         | 0.3                                      | 0.2         | 0.2                                      | 0.2         | 0.2         |
| Potassium                           | T6     | 2:1-1          | 0.1          | mg/l         | <0.1                                     | <0.1        | <0.1                                     | <0.1        | <0.1        |
| Sodium                              | T6     | 2:1-1          | 0.1          | mg/l         | 1.7                                      | 1.5         | 0.7                                      | 0.7         | 1.1         |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10           | mg/l         | 2000                                     | 270         | 12000                                    | 6500        | 3800        |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10           | ma/l         | 1700                                     | 230         | 9800                                     | 5300        | 3200        |

Concept Reference: 749318

Project Site: A303 Stonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     | 100    | 450a           | Concep      | t Reference | 749318 008                               | 749318 009 | 749318 010 |
|-------------------------------------|--------|----------------|-------------|-------------|------------------------------------------|------------|------------|
|                                     | 1803   | Custon         | ner Sampl   | e Reference | BH RZ 603 duplicate<br>(leachate pH 6.2) | BH R608    | BH R608    |
|                                     | - 35   |                | 31.2        | 10.75       | 10.6                                     |            |            |
|                                     | 13629  | 77.60          |             | 10.85       | 11.05                                    |            |            |
|                                     |        | 1.79           | ate Sampled | 31-MAY-2018 | Deviating                                | Deviating  |            |
| Determinand                         | Method | Test<br>Sample | LOD         | Units       |                                          |            |            |
| orthophosphate                      | T686   | 2:1-1          | 0.5         | mg/l        | <0.5                                     | 0.5        | 0.5        |
| P (Dissolved)                       | T373   | 2:1-1          | 1           | mg/l        | <1                                       | <1         | <1         |
| P (Total)                           | T303   | 2:1-1          | 1           | mg/l        | <1                                       | <1         | <1         |
| Chloride                            | T686   | 2:1-1          | 1           | mg/l        | 2                                        | 4          | 3          |
| Sulphate                            | T11    | 2:1-1          | 0.05        | mg/l        | 1.5                                      | 21         | 20         |
| Calcium                             | T6     | 2:1-1          | 0.1         | mg/l        | 19                                       | 26         | 26         |
| Magnesium                           | T6     | 2:1-1          | 0.1         | mg/l        | 0.3                                      | 0.3        | 0.3        |
| Potassium                           | T6     | 2:1-1          | 0.1         | mg/l        | 0.1                                      | <0.1       | <0.1       |
| Sodium                              | T6     | 2:1-1          | 0.1         | mg/l        | 0.9                                      | 1.1        | 1.0        |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10          | mg/l        | 4500                                     | 5100       | 6200       |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10          | mg/l        | 3700                                     | 40         | 30         |

## Index to symbols used in 749318-5

| Value | Description                     |
|-------|---------------------------------|
| 2:1-1 | Leachate to BS EN 12457-1 (2:1) |
| U     | Analysis is UKAS accredited     |
| N     | Analysis is not UKAS accredited |

## **Notes**

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised for samples 009 and 010.

## **Method Index**

| Value | Description        |
|-------|--------------------|
| T11   | IC                 |
| T686  | Discrete Analyser  |
| T373  | ICP/OES (Filtered) |
| T22   | Titration          |
| T303  | ICP-OES (Total)    |
| T6    | ICP/OES            |
| T85   | Calc               |

## **Accreditation Summary**

| Determinand                         | Method | Test<br>Sample | LOD  | Units | Symbol | Concept References  |
|-------------------------------------|--------|----------------|------|-------|--------|---------------------|
| orthophosphate                      | T686   | 2:1-1          | 0.5  | mg/l  | N      | 001-002,004,006-010 |
| P (Dissolved)                       | T373   | 2:1-1          | 1    | mg/l  | N      | 001-002,004,006-010 |
| P (Total)                           | T303   | 2:1-1          | 1    | mg/l  | N      | 001-002,004,006-010 |
| Chloride                            | T686   | 2:1-1          | 1    | mg/l  | U      | 001-002,004,006-010 |
| Sulphate                            | T11    | 2:1-1          | 0.05 | mg/l  | N      | 001-002,004,006-010 |
| Calcium                             | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-002,004,006-010 |
| Magnesium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-002,004,006-010 |
| Potassium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-002,004,006-010 |
| Sodium                              | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-002,004,006-010 |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10   | mg/l  | N      | 001-002,004,006-010 |
| Alkalinity expressed as CaCO3       | T22    | 2.1-1          | 10   | ma/l  | N      | 001-002 004 006-010 |



Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

## Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 755463-3

Date of Report: 19-Sep-2018

Customer: Structural Soils Ltd

The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Customer Contact: Mr Michael Addinall

Customer Job Reference: 733442

Customer Site Reference: A303 Stonehenge Phase 6 Ground

Investigation

Date Job Received at Concept: 25-Jul-2018

Date Analysis Started: 30-Jul-2018

Date Analysis Completed: 19-Sep-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical
Services Quality Manual



Report checked and authorised by : Zoe Gunter

Customer Service Advisor

Issued by : Zoe Gunter Customer Service Advisor



Concept Reference: 755463

Project Site: A303 Stonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     |        | 755463 004     | 755463 005 | 755463 008  | 755463 010 |           |           |           |
|-------------------------------------|--------|----------------|------------|-------------|------------|-----------|-----------|-----------|
|                                     |        | BH R614        | BH R614    | BH R615     | BH R616    |           |           |           |
|                                     |        | 4.05           | 5.85       | 13.88       | 12.00      |           |           |           |
|                                     |        |                | D          | ate Sampled | Deviating  | Deviating | Deviating | Deviating |
|                                     |        |                |            | AGS Type    | D          | D         | D         | D         |
|                                     | 7      | 6              | 19         | 14          |            |           |           |           |
| Determinand                         | Method | Test<br>Sample | LOD        | Units       |            |           |           |           |
| orthophosphate                      | T686   | 2:1-1          | 0.5        | mg/l        | <0.5       | <0.5      | <0.5      | <0.5      |
| P (Dissolved)                       | T373   | 2:1-1          | 1          | mg/l        | <1         | <1        | <1        | <1        |
| P (Total)                           | T303   | 2:1-1          | 1          | mg/l        | (NR)       | (NR)      | (NR)      | (NR)      |
| Chloride                            | T686   | 2:1-1          | 1          | mg/l        | 1          | 2         | 6         | 3         |
| Sulphate                            | T11    | 2:1-1          | 0.05       | mg/l        | 3.8        | 5.1       | 7.0       | 4.8       |
| Calcium                             | T6     | 2:1-1          | 0.1        | mg/l        | 13         | 15        | 17        | 14        |
| Magnesium                           | T6     | 2:1-1          | 0.1        | mg/l        | 0.2        | 0.3       | 0.2       | 0.3       |
| Potassium                           | T6     | 2:1-1          | 0.1        | mg/l        | 0.1        | <0.1      | 0.1       | <0.1      |
| Sodium                              | T6     | 2:1-1          | 0.1        | mg/l        | 0.9        | 0.6       | 3.3       | 0.5       |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10         | mg/l        | 73         | 210       | 210       | 220       |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10         | mg/l        | 80         | 190       | 190       | 200       |

## Index to symbols used in 755463-3

| Value | Description                     |
|-------|---------------------------------|
| 2:1-1 | Leachate to BS EN 12457-1 (2:1) |
| NR    | No Result                       |
| U     | Analysis is UKAS accredited     |
| N     | Analysis is not UKAS accredited |

## **Notes**

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

## **Method Index**

| Value | Description        |
|-------|--------------------|
| T85   | Calc               |
| T22   | Titration          |
| T373  | ICP/OES (Filtered) |
| T303  | ICP-OES (Total)    |
| T6    | ICP/OES            |
| T11   | IC                 |
| T686  | Discrete Analyser  |

## **Accreditation Summary**

| Determinand                         | Method | Test<br>Sample | LOD  | Units | Symbol | Concept References |
|-------------------------------------|--------|----------------|------|-------|--------|--------------------|
| orthophosphate                      | T686   | 2:1-1          | 0.5  | mg/l  | N      | 004-005,008,010    |
| P (Dissolved)                       | T373   | 2:1-1          | 1    | mg/l  | N      | 004-005,008,010    |
| P (Total)                           | T303   | 2:1-1          | 1    | mg/l  | N      | 004-005,008,010    |
| Chloride                            | T686   | 2:1-1          | 1    | mg/l  | U      | 004-005,008,010    |
| Sulphate                            | T11    | 2:1-1          | 0.05 | mg/l  | N      | 004-005,008,010    |
| Calcium                             | T6     | 2:1-1          | 0.1  | mg/l  | N      | 004-005,008,010    |
| Magnesium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 004-005,008,010    |
| Potassium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 004-005,008,010    |
| Sodium                              | T6     | 2:1-1          | 0.1  | mg/l  | N      | 004-005,008,010    |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10   | mg/l  | N      | 004-005,008,010    |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10   | mg/l  | N      | 004-005,008,010    |



Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

## **Concept Life Sciences Certificate of Analysis**

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 757612-2

Date of Report: 19-Sep-2018

Customer: Structural Soils Ltd.

The Old School Stillhouse Lane **Bedminster** Bristol BS3 4EB

Customer Contact: Mr Michael Addinall

Customer Job Reference: 733442

Customer Site Reference: A303 STonehenge Phase 6 Ground

Investigation

Date Job Received at Concept: 31-Jul-2018

Date Analysis Started: 07-Aug-2018 Date Analysis Completed: 19-Sep-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.


Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual



Report checked and authorised by: Zoe Gunter

Customer Service Advisor

Issued by: Zoe Gunter



Concept Reference: 757612

Project Site: A303 STonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     | Concept Reference |                |      |             |                    |                    | 757612 003        | 757612 004                                           | 757612 005                                          |
|-------------------------------------|-------------------|----------------|------|-------------|--------------------|--------------------|-------------------|------------------------------------------------------|-----------------------------------------------------|
| Customer Sample Reference           |                   |                |      |             | BH R607 13.75 18 D | BH R607 16.56 22 D | BH R607 18.9 25 D | BH R607 13.75 18 D<br>duplicate (leachate<br>pH 6.2) | BH R607 18.9 25 D<br>duplicate (leachate<br>pH 6.2) |
|                                     |                   |                |      | Depth       | 13.75              | 16.56              | 18.9              | 13.75                                                | 18.9                                                |
|                                     |                   |                | Da   | ate Sampled | Deviating          | Deviating          | Deviating         | Deviating                                            | Deviating                                           |
| Determinand                         | Method            | Test<br>Sample | LOD  | Units       |                    |                    |                   |                                                      |                                                     |
| orthophosphate                      | T686              | 2:1-1          | 0.5  | mg/l        | <0.5               | <0.5               | <0.5              | <0.5                                                 | <0.5                                                |
| P (Dissolved)                       | T373              | 2:1-1          | 1    | mg/l        | <1                 | <1                 | <1                | <1                                                   | <1                                                  |
| P (Total)                           | T303              | 2:1-1          | 1    | mg/l        | <1                 | <1                 | <1                | <1                                                   | <1                                                  |
| Chloride                            | T686              | 2:1-1          | 1    | mg/l        | 1                  | 2                  | 3                 | 2                                                    | 3                                                   |
| Sulphate                            | T11               | 2:1-1          | 0.05 | mg/l        | 14                 | 11                 | 3.8               | 12                                                   | 4.1                                                 |
| Calcium                             | T6                | 2:1-1          | 0.1  | mg/l        | 24                 | 25                 | 23                | 25                                                   | 20                                                  |
| Magnesium                           | T6                | 2:1-1          | 0.1  | mg/l        | 0.1                | 0.2                | 0.2               | 0.1                                                  | 0.2                                                 |
| Potassium                           | T6                | 2:1-1          | 0.1  | mg/l        | <0.1               | <0.1               | <0.1              | <0.1                                                 | <0.1                                                |
| Sodium                              | T6                | 2:1-1          | 0.1  | mg/l        | 0.4                | 0.3                | 0.5               | 0.6                                                  | 0.8                                                 |
| Alkalinity expressed as Bicarbonate | T85               | 2:1-1          | 10   | mg/l        | 73                 | 130                | 110               | 37                                                   | 61                                                  |
| Alkalinity expressed as CaCO3       | T22               | 2:1-1          | 10   | mg/l        | 80                 | 130                | 110               | 50                                                   | 70                                                  |

## Index to symbols used in 757612-2

| Value | Description                     |  |  |  |  |  |  |
|-------|---------------------------------|--|--|--|--|--|--|
| 2:1-1 | Leachate to BS EN 12457-1 (2:1) |  |  |  |  |  |  |
| U     | Analysis is UKAS accredited     |  |  |  |  |  |  |
| N     | Analysis is not UKAS accredited |  |  |  |  |  |  |

## **Notes**

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

## **Method Index**

| Value | Description        |
|-------|--------------------|
| T11   | IC                 |
| T686  | Discrete Analyser  |
| T22   | Titration          |
| T85   | Calc               |
| T373  | ICP/OES (Filtered) |
| T303  | ICP-OES (Total)    |
| T6    | ICP/OES            |

## **Accreditation Summary**

| Determinand                         | Method | Test<br>Sample | LOD  | Units | Symbol | Concept References |
|-------------------------------------|--------|----------------|------|-------|--------|--------------------|
| orthophosphate                      | T686   | 2:1-1          | 0.5  | mg/l  | N      | 001-005            |
| P (Dissolved)                       | T373   | 2:1-1          | 1    | mg/l  | N      | 001-005            |
| P (Total)                           | T303   | 2:1-1          | 1    | mg/l  | N      | 001-005            |
| Chloride                            | T686   | 2:1-1          | 1    | mg/l  | U      | 001-005            |
| Sulphate                            | T11    | 2:1-1          | 0.05 | mg/l  | N      | 001-005            |
| Calcium                             | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-005            |
| Magnesium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-005            |
| Potassium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-005            |
| Sodium                              | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001-005            |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10   | mg/l  | N      | 001-005            |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10   | mg/l  | N      | 001-005            |



Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

# Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 757633-1

Date of Report: 19-Sep-2018

Customer: Structural Soils Ltd

The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Customer Contact: Mr Michael Addinall

Customer Job Reference: 733442

Customer Site Reference: A303 STonehenge Phase 6 Ground

Investigation

Date Job Received at Concept: 31-Jul-2018

Date Analysis Started: 07-Aug-2018 Date Analysis Completed: 19-Sep-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical
Services Quality Manual



Report checked and authorised by :
Zoe Gunter

Customer Service Advisor

Issued by :
Zoe Gunter
Customer Service Advisor



Concept Reference: 757633

Project Site: A303 STonehenge Phase 6 Ground Investigation

Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

Magnesium

Potassium

Alkalinity expressed as Bicarbonate

Alkalinity expressed as CaCO3

Sodium

|                | 757633 001   |                   |      |             |           |
|----------------|--------------|-------------------|------|-------------|-----------|
|                | le Reference | BH R616 10.2 12 D |      |             |           |
|                |              |                   |      | Top Depth   | 10.20     |
|                |              |                   |      | Depth       | 10.20     |
|                |              |                   | D    | ate Sampled | Deviating |
| Determinand    | Method       | Test<br>Sample    | LOD  | Units       |           |
| orthophosphate | T686         | 2:1-1             | 0.5  | mg/l        | <0.5      |
| P (Dissolved)  | T373         | 2:1-1             | 1    | mg/l        | <1        |
| P (Total)      | T303         | 2:1-1             | 1    | mg/l        | <1        |
| Chloride       | T686         | 2:1-1             | 1    | mg/l        | 3         |
| Sulphate       | T11          | 2:1-1             | 0.05 | mg/l        | 2.8       |
| Calcium        | Т6           | 2:1-1             | 0.1  | ma/l        | 17        |

2:1-1

2:1-1

0.1

0.1

mg/l

mg/l

mg/l

mg/l

mg/l

T6

T6

T6

T22

## Index to symbols used in 757633-1

0.4

<0.1

< 0.1

170

160

| Value | Description                     |
|-------|---------------------------------|
| 2:1-1 | Leachate to BS EN 12457-1 (2:1) |
| U     | Analysis is UKAS accredited     |
| N     | Analysis is not UKAS accredited |

## **Notes**

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

## **Method Index**

| Value | Description        |
|-------|--------------------|
| T6    | ICP/OES            |
| T373  | ICP/OES (Filtered) |
| T11   | IC                 |
| T85   | Calc               |
| T686  | Discrete Analyser  |
| T22   | Titration          |
| T303  | ICP-OES (Total)    |

## **Accreditation Summary**

| Determinand                         | Method | Test<br>Sample | LOD  | Units | Symbol | Concept References |
|-------------------------------------|--------|----------------|------|-------|--------|--------------------|
| orthophosphate                      | T686   | 2:1-1          | 0.5  | mg/l  | N      | 001                |
| P (Dissolved)                       | T373   | 2:1-1          | 1    | mg/l  | N      | 001                |
| P (Total)                           | T303   | 2:1-1          | 1    | mg/l  | N      | 001                |
| Chloride                            | T686   | 2:1-1          | 1    | mg/l  | U      | 001                |
| Sulphate                            | T11    | 2:1-1          | 0.05 | mg/l  | N      | 001                |
| Calcium                             | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001                |
| Magnesium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001                |
| Potassium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001                |
| Sodium                              | T6     | 2:1-1          | 0.1  | mg/l  | N      | 001                |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10   | mg/l  | N      | 001                |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10   | mg/l  | N      | 001                |



Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

## Concept Life Sciences Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE

Tel: 0161 874 2400 Fax: 0161 874 2468

Report Number: 757642-2

Date of Report: 12-Sep-2018

Customer: Structural Soils Ltd.

The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Customer Contact: Mr Michael Addinall

Customer Job Reference: 733442

Date Job Received at Concept: 31-Jul-2018

Date Analysis Started: 07-Aug-2018

Date Analysis Completed: 12-Sep-2018

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical
Services Quality Manual



Report checked and authorised by : Chloe Kitto Customer Service Advisor Issued by : Chloe Kitto Customer Service Advisor



Concept Reference: 757642 Customer Reference: 733442

Leachate to BS EN 12457-1 (2:1) Analysed as Water

Suite F.3

|                                     | Concept Reference Customer Sample Reference |                |      |             |           |           |  |  |  |
|-------------------------------------|---------------------------------------------|----------------|------|-------------|-----------|-----------|--|--|--|
|                                     |                                             |                |      |             |           |           |  |  |  |
|                                     |                                             |                |      | Depth       | 11.25     | 11.25     |  |  |  |
|                                     |                                             |                | Da   | ate Sampled | Deviating | Deviating |  |  |  |
| Determinand                         | Method                                      | Test<br>Sample | LOD  | Units       |           |           |  |  |  |
| orthophosphate                      | T686                                        | 2:1-1          | 0.5  | mg/l        | <0.5      | <0.5      |  |  |  |
| P (Dissolved)                       | T373                                        | 2:1-1          | 1    | mg/l        | <1        | <1        |  |  |  |
| P (Total)                           | T303                                        | 2:1-1          | 1    | mg/l        | <1        | <1        |  |  |  |
| Chloride                            | T686                                        | 2:1-1          | 1    | mg/l        | 6         | 5         |  |  |  |
| Sulphate                            | T11                                         | 2:1-1          | 0.05 | mg/l        | 19        | 16        |  |  |  |
| Calcium                             | T6                                          | 2:1-1          | 0.1  | mg/l        | 31        | 30        |  |  |  |
| Magnesium                           | T6                                          | 2:1-1          | 0.1  | mg/l        | 0.2       | 0.2       |  |  |  |
| Potassium                           | T6                                          | 2:1-1          | 0.1  | mg/l        | <0.1      | <0.1      |  |  |  |
| Sodium                              | T6                                          | 2:1-1          | 0.1  | mg/l        | 2.0       | 2.2       |  |  |  |
| Alkalinity expressed as Bicarbonate | T85                                         | 2:1-1          | 10   | mg/l        | 37        | 110       |  |  |  |
| Alkalinity expressed as CaCO3       | T22                                         | 2:1-1          | 10   | mg/l        | 50        | 110       |  |  |  |

## Index to symbols used in 757642-2

| Value | Description                     |  |  |  |  |  |
|-------|---------------------------------|--|--|--|--|--|
| 2:1-1 | Leachate to BS EN 12457-1 (2:1) |  |  |  |  |  |
| U     | Analysis is UKAS accredited     |  |  |  |  |  |
| N     | Analysis is not UKAS accredited |  |  |  |  |  |

## **Notes**

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

## **Method Index**

| Value | Description        |
|-------|--------------------|
| T11   | IC                 |
| T373  | ICP/OES (Filtered) |
| T22   | Titration          |
| T303  | ICP-OES (Total)    |
| T85   | Calc               |
| T686  | Discrete Analyser  |
| T6    | ICP/OES            |

## **Accreditation Summary**

| Determinand                         | Method | Test<br>Sample | LOD  | Units | Symbol | Concept References |
|-------------------------------------|--------|----------------|------|-------|--------|--------------------|
| orthophosphate                      | T686   | 2:1-1          | 0.5  | mg/l  | N      | 002,004            |
| P (Dissolved)                       | T373   | 2:1-1          | 1    | mg/l  | N      | 002,004            |
| P (Total)                           | T303   | 2:1-1          | 1    | mg/l  | N      | 002,004            |
| Chloride                            | T686   | 2:1-1          | 1    | mg/l  | U      | 002,004            |
| Sulphate                            | T11    | 2:1-1          | 0.05 | mg/l  | N      | 002,004            |
| Calcium                             | T6     | 2:1-1          | 0.1  | mg/l  | N      | 002,004            |
| Magnesium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 002,004            |
| Potassium                           | T6     | 2:1-1          | 0.1  | mg/l  | N      | 002,004            |
| Sodium                              | T6     | 2:1-1          | 0.1  | mg/l  | N      | 002,004            |
| Alkalinity expressed as Bicarbonate | T85    | 2:1-1          | 10   | mg/l  | N      | 002,004            |
| Alkalinity expressed as CaCO3       | T22    | 2:1-1          | 10   | mg/l  | N      | 002,004            |



ANALYTICAL REPORT

Report Number 16630-18 Date Received 18-JUN-2018

Date Reported 05-JUL-2018

Project SOIL

Reference 733442 Order Number F473 MICHAEL ADDINALL

STRUCTURAL SOILS LTD
THE OLD SCHOOL HOUSE

STILLHOUSE LANE

BEDMINSTER BRISTOL BS3 4EB

| Laboratory Reference            |       | SOIL391573             | SOIL391574             | SOIL391575             |  |  |  |  |  |  |
|---------------------------------|-------|------------------------|------------------------|------------------------|--|--|--|--|--|--|
| Sample Reference                |       | BHR602 15.<br>40-15.50 | BHR602 20.<br>30-20.45 | BHR602 25.<br>50-25.65 |  |  |  |  |  |  |
| Determinand                     | Unit  | SOIL                   | SOIL                   | SOIL                   |  |  |  |  |  |  |
| Dry Matter (Fresh)              | %     | 81.3                   | 79.9                   | 79.0                   |  |  |  |  |  |  |
| Neutralising Value as CaCO3 eq. | % w/w | 77.9                   | 91.3                   | 70.1                   |  |  |  |  |  |  |
| Neutralising Value as CaO eq.   | % w/w | 43.7                   | 51.2                   | 39.3                   |  |  |  |  |  |  |
| Total Phosphorus                | mg/kg | 53098                  | 16847                  | 76585                  |  |  |  |  |  |  |
| NAC Soluble Phosphorus          | % w/w | <0.1                   | <0.1                   | <0.1                   |  |  |  |  |  |  |

Notes

Analysis Notes The sample submitted was of adequate size to complete all analysis requested.

The results as reported relate only to the item(s) submitted for testing.

The results are presented on a dry matter basis unless otherwise stipulated.

Document Control

This test report shall not be reproduced, except in full, without the written approval of the laboratory.

Reported by

## Joe Cherrie

Natural Resource Management, a trading division of Cawood Scientific Ltd.

Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 6NS

Tel: 01344 886338 Fax: 01344 890972

email: enquiries@nrm.uk.com



| ANALYTICAL REPORT                                           |                                                                                                                                                                                                                                                                                                                                                                |                        |                        |                                                                                       |     |  |                                                            |  |  |  |  |
|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|---------------------------------------------------------------------------------------|-----|--|------------------------------------------------------------|--|--|--|--|
| Report Number Date Received Date Reported Project Reference | 20140-18 F473<br>18-JUL-2018<br>06-AUG-2018<br>SOIL<br>733442                                                                                                                                                                                                                                                                                                  |                        |                        | MICHAEL ADDINALL STRUCTURAL SOILS LTD THE OLD SCHOOL HOUSE STILLHOUSE LANE BEDMINSTER |     |  | Client 733442 A303 STONEHENGE PHASE 6 GROUND INVESTIGATION |  |  |  |  |
| Order Number Laboratory Reference                           |                                                                                                                                                                                                                                                                                                                                                                | SOIL395119             | SOIL395120             | BRISTOL BS3 4                                                                         | ₽EB |  |                                                            |  |  |  |  |
| Sample Reference                                            |                                                                                                                                                                                                                                                                                                                                                                | BH R608<br>10.60-10.90 | BH R608<br>10.71-10.90 |                                                                                       |     |  |                                                            |  |  |  |  |
| Determinand                                                 | Unit                                                                                                                                                                                                                                                                                                                                                           | SOIL                   | SOIL                   |                                                                                       |     |  |                                                            |  |  |  |  |
| Dry Matter (Fresh)                                          | %                                                                                                                                                                                                                                                                                                                                                              | 85.3                   | 79.5                   |                                                                                       |     |  |                                                            |  |  |  |  |
| Neutralising Value as CaCO3 eq.                             | % w/w                                                                                                                                                                                                                                                                                                                                                          | 97.4                   | 97.5                   |                                                                                       |     |  |                                                            |  |  |  |  |
| Neutralising Value as CaO eq.                               | % w/w                                                                                                                                                                                                                                                                                                                                                          | 54.6                   | 54.7                   |                                                                                       |     |  |                                                            |  |  |  |  |
| Total Phosphorus                                            | mg/kg                                                                                                                                                                                                                                                                                                                                                          | 652                    | 1004                   |                                                                                       |     |  |                                                            |  |  |  |  |
| NAC Soluble Phosphorus                                      | % w/w                                                                                                                                                                                                                                                                                                                                                          | <0.1                   | <0.1                   |                                                                                       |     |  |                                                            |  |  |  |  |
| Notes Analysis Notes  Document Control  Reported by         | The sample submitted was of adequate size to complete all analysis requested.  The results as reported relate only to the item(s) submitted for testing.  The results are presented on a dry matter basis unless otherwise stipulated.  This test report shall not be reproduced, except in full, without the written approval of the laboratory.  Joe Cherrie |                        |                        |                                                                                       |     |  |                                                            |  |  |  |  |

Natural Resource Management, a trading division of Cawood Scientific Ltd.

Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 6NS

Tel: 01344 886338 Fax: 01344 890972

email: enquiries@nrm.uk.com



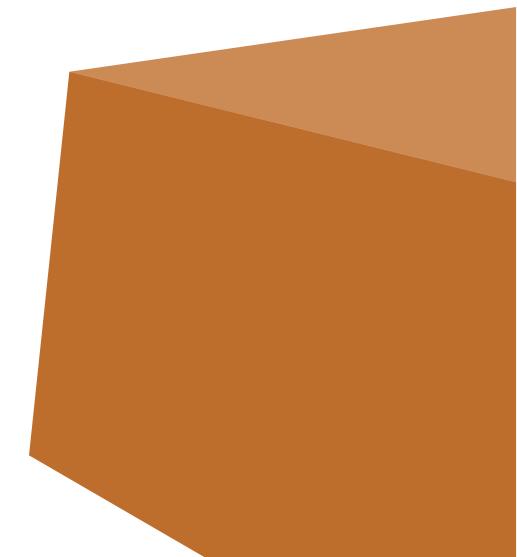
| ANALYTICAL REPORT               |                                                                               |            |  |                      |  |  |  |  |  |  |  |  |
|---------------------------------|-------------------------------------------------------------------------------|------------|--|----------------------|--|--|--|--|--|--|--|--|
| Report Number                   | 19545-18 F473                                                                 |            |  | MICHAEL ADDINALL     |  |  |  |  |  |  |  |  |
| Date Received                   | 12-JUL-2018                                                                   |            |  | STRUCTURAL SOILS LTD |  |  |  |  |  |  |  |  |
| Date Reported                   | 06-AUG-2018                                                                   |            |  | THE OLD SCHOOL HOUSE |  |  |  |  |  |  |  |  |
| Project                         | SOIL                                                                          |            |  | STILLHOUSE LANE      |  |  |  |  |  |  |  |  |
| Reference                       | 733442                                                                        |            |  | BEDMINSTER           |  |  |  |  |  |  |  |  |
| Order Number BRISTOL BS3 4EB    |                                                                               |            |  |                      |  |  |  |  |  |  |  |  |
| Laboratory Reference            |                                                                               | SOIL394480 |  |                      |  |  |  |  |  |  |  |  |
| Sample Reference                | BHRZ 603<br>15.43-15.62                                                       |            |  |                      |  |  |  |  |  |  |  |  |
| Determinand                     | Unit                                                                          | SOIL       |  |                      |  |  |  |  |  |  |  |  |
| Dry Matter (Fresh)              | %                                                                             | 79.5       |  |                      |  |  |  |  |  |  |  |  |
| Neutralising Value as CaCO3 eq. | % w/w                                                                         | 71.4       |  |                      |  |  |  |  |  |  |  |  |
| Neutralising Value as CaO eq.   | % w/w                                                                         | 40.0       |  |                      |  |  |  |  |  |  |  |  |
| Total Phosphorus                | mg/kg                                                                         | 61078      |  |                      |  |  |  |  |  |  |  |  |
| NAC Soluble Phosphorus          | % w/w                                                                         | <0.1       |  |                      |  |  |  |  |  |  |  |  |
| Notes                           |                                                                               |            |  |                      |  |  |  |  |  |  |  |  |
| Analysis Notes                  | The sample submitted was of adequate size to complete all analysis requested. |            |  |                      |  |  |  |  |  |  |  |  |
|                                 | The results as reported relate only to the item(s) submitted for testing.     |            |  |                      |  |  |  |  |  |  |  |  |
|                                 | The results are presented on a dry matter basis unless otherwise stipulated   |            |  |                      |  |  |  |  |  |  |  |  |

The results are presented on a dry matter basis unless otherwise stipulated.

Document Control

This test report shall not be reproduced, except in full, without the written approval of the laboratory.

Reported by


## Joe Cherrie

Natural Resource Management, a trading division of Cawood Scientific Ltd.

Coopers Bridge, Braziers Lane, Bracknell, Berkshire, RG42 6NS

Tel: 01344 886338 Fax: 01344 890972

email: enquiries@nrm.uk.com



You may re-use this information (not including logos) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence: visit <a href="https://www.nationalarchives.gov.uk/doc/open-government-licence/">www.nationalarchives.gov.uk/doc/open-government-licence/</a> with to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email psi@nationalarchives.gsi.gov.uk. Mapping (where present): © Crown copyright and database rights 2021 OS 100030649.

You are permitted to use this data solely to enable you to respond to, or interact with, the organisation that provided you with the data. You are not permitted to copy, sub-licence, distribute or sell any of this data to third parties in any form.

This document is also available on our website at www.nationalhighways.co.uk For an accessible version of this publication please call 0300 123 5000 and we will help you.

If you have any enquiries about this publication email info@highwaysengland.co.uk or call 0300 123 5000\*. Please quote the National Highways publications code PR35/22 National Highways creative job number BRS17\_0027

\*Calls to 03 numbers cost no more than a national rate call to an 01 or 02 number and must count towards any inclusive minutes in the same way as 01 and 02 calls. These rules apply to calls from any type of line including mobile, BT, other fixed line or payphone. Calls may be recorded or monitored. Printed on paper from well-managed forests and other controlled sources when issued directly by National Highways. Registered office Bridge House, 1 Walnut Tree Close, Guildford GU1 4LZ National Highways Limited registered in England and Wales number 09346363